
ExpressionTree.java

Objective: To build and evaluate an expression tree.

Background:
The prerequisite for this project is to complete both the EvaluateTree project and the ToPostfix project. ExpressionTree
needs working versions of methods from those projects.

Earlier this year we made a simple calculator using stacks (SimpleCalc). The user would enter the expression as a String
and the program would evaluate it using a stack.

In this project, binary trees will be used to store and evaluate an expression. The advantage of using a binary tree is the
structure of the tree determines the precedence of operations. For example, the expression “2 + 3 * 5” would be stored in
the tree as such:

!
The expression would be evaluated using postorder and a stack. If the addition happens first, like “(2 + 3) * 5”, then the
tree would look like this:

!
Notice the tree stores no parentheses. The tree’s structure and postorder allow for proper evaluation. Also, the only
operators in this project will be the binary operators “+”, “-“, “*”, “/“, “%”, and “^”. No unary operators will be used in
the expressions. This will insure that every parent node in the tree has exactly two children.

Assignment:
Download the file ExpressionTree.zip from Mr Greenstein’s web site. Unzip the file and it will create the directory
“ExpressionTree” containing the file ExpressionTree.java.

1. Prior to this you completed the ToPostfix project. Move the following files from the ToPostfix directory to the
ExpressionTree directory: ArrayStack.java, ExprUtils.java, Stack.java, and TreeNode.java. Using Geany, copy
your Prompt.java file into the directory too. You will need to prompt the user for input.

2. Copy the following expression tree methods from BinaryTree.java into ExpressionTree.java. As you copy them,
test each method and be sure they work:  
void printInorder(), void printPreorder(), and void printPostorder().

3. Copy method double evaluateTree() from EvaluateTree.java into ExpressionTree.java.

4. Write the void treeMakerInterface() method in ExpressionTree.java. It should implement the features listed in the
printMenu() method, specifically
• i - input new expression
• pre - print the tree in prefix notation
• in - print the tree in infix notation
• post - print the tree in postfix notation

• e - evaluate the expression
• p - print the expression tree
• q - quit

5. Write the TreeNode<String> buildTree() method in ExpressionTree.java. buildTree() reads an array (or
ArrayList) of tokens in postfix order and builds the tree. Work out an algorithm before you write the code.  
(Hint: Use a TreeNode stack.)

A sample run (user input in bold):

% java ExpressionTree

Welcome to ExpressionTree!!!

Current expression:

Choose:
 (i) input new expression
 (pre) print prefix notation
 (in) print infix notation
 (post) print postfix notation
 (e) evaluate expression
 (p) print tree
 (q) quit
 -> i
expression -> 2 * 3 + 4

Current expression: 2 * 3 + 4

Choose:
 (i) input new expression
 (pre) print prefix notation
 (in) print infix notation
 (post) print postfix notation
 (e) evaluate expression
 (p) print tree
 (q) quit
 -> p

Print tree

 4
+
 3
 *
 2

Current expression: 2 * 3 + 4

Choose:
 (i) input new expression
 (pre) print prefix notation
 (in) print infix notation
 (post) print postfix notation
 (e) evaluate expression
 (p) print tree
 (q) quit
 -> pre

Prefix order
+ * 2 3 4

Current expression: 2 * 3 + 4

Choose:
 (i) input new expression

 (pre) print prefix notation
 (in) print infix notation
 (post) print postfix notation
 (e) evaluate expression
 (p) print tree
 (q) quit
 -> in

Infix order
2 * 3 + 4

Current expression: 2 * 3 + 4

Choose:
 (i) input new expression
 (pre) print prefix notation
 (in) print infix notation
 (post) print postfix notation
 (e) evaluate expression
 (p) print tree
 (q) quit
 -> post

Postfix order
2 3 * 4 +

Current expression: 2 * 3 + 4

Choose:
 (i) input new expression
 (pre) print prefix notation
 (in) print infix notation
 (post) print postfix notation
 (e) evaluate expression
 (p) print tree
 (q) quit
 -> e

Answer: 10.0

Current expression: 2 * 3 + 4

Choose:
 (i) input new expression
 (pre) print prefix notation
 (in) print infix notation
 (post) print postfix notation
 (e) evaluate expression
 (p) print tree
 (q) quit
 -> i
expression -> 96 + 2.8 * 61.1 - 45.2

Current expression: 96 + 2.8 * 61.1 - 45.2

Choose:
 (i) input new expression
 (pre) print prefix notation
 (in) print infix notation
 (post) print postfix notation
 (e) evaluate expression
 (p) print tree
 (q) quit
 -> p

Print tree

 45.2
-

 61.1
 *
 2.8
 +
 96

Current expression: 96 + 2.8 * 61.1 - 45.2

Choose:
 (i) input new expression
 (pre) print prefix notation
 (in) print infix notation
 (post) print postfix notation
 (e) evaluate expression
 (p) print tree
 (q) quit
 -> e

Answer: 221.88

Current expression: 96 + 2.8 * 61.1 - 45.2

Choose:
 (i) input new expression
 (pre) print prefix notation
 (in) print infix notation
 (post) print postfix notation
 (e) evaluate expression
 (p) print tree
 (q) quit
 -> i
expression -> 8 / 4 + (2.1 * (5 + 3.3) % (6 - 1))

Current expression: 8 / 4 + (2.1 * (5 + 3.3) % (6 - 1))

Choose:
 (i) input new expression
 (pre) print prefix notation
 (in) print infix notation
 (post) print postfix notation
 (e) evaluate expression
 (p) print tree
 (q) quit
 -> p

Print tree

 1
 -
 6
 %
 3.3
 +
 5
 *
 2.1
+
 4
 /
 8

Current expression: 8 / 4 + (2.1 * (5 + 3.3) % (6 - 1))

Choose:
 (i) input new expression
 (pre) print prefix notation
 (in) print infix notation
 (post) print postfix notation
 (e) evaluate expression
 (p) print tree
 (q) quit

 -> e

Answer: 4.430000000000003

Current expression: 8 / 4 + (2.1 * (5 + 3.3) % (6 - 1))

Choose:
 (i) input new expression
 (pre) print prefix notation
 (in) print infix notation
 (post) print postfix notation
 (e) evaluate expression
 (p) print tree
 (q) quit
 -> q

Thanks for using ExpressionTree! Goodbye.

