
EvaluateTree.java

Objective: To create your own algorithm and implement the code for evaluating the result of a binary
expression tree.

Background:
Binary expression trees hold algebraic expressions that can be easily evaluated for a result. For example, the
following tree is created from the expression “(7 + 3) * (5 - 2)”.

!

Notice there are no parentheses in the tree, just operands and operators. The tree structure holds the priority of
operations. The highest priority operations are at the bottom of the tree, while the lowest priority operation is at
the root. By traversing the tree in a specific way, the result of this expression can be calculated.

Assignment:
Download the file EvaluteTree.zip from Mr Greenstein’s web site. Unzip the file and it will create the directory
“EvaluationTree” with two files, TreeNode.java and EvaluateTree.java. TreeNode.java is the same file used
in the BinaryTree project, and should not be changed.

You will create the double evaluateTree() method in the EvaluateTree.java file. It will return the result of
evaluating the tree. A test main program is provided with two expression trees.

In this project, there are a few constraints to limit the scope.
1. The operations to be performed are addition (+), subtraction (-), multiplication (*), division (/), modulus

(%), and exponent (^).
2. There will be no unary operators in the tree, only binary operators as shown in 1.
3. Operands will only be numbers. There will be no variables in the tree.

Important! It is wise to test your program on more than the two expressions provided. Create and evaluate a few
more expression trees to insure your program works.

A sample run using the program in EvaluateTree:

% java EvaluateTree

Expression Tree

Expression: 2 ^ 3 ^ 2

 2
 ^
 3
^
 2

Answer: 512.0

Expression: ((2 + 3) * 5 / 6) + 7 * 8

 8
 *
 7
+
 6
 /
 5
 *
 3
 +
 2

Answer: 60.166666666666664

Expression: 1.2 * ((3.4 - 2.1) / 1.3 * 8.)

 8.
 *
 1.3
 /
 2.1
 -
 3.4
*
 1.2

Answer: 9.599999999999998

