
BinaryTree.java

Objective: Build a binary tree and perform some rudimentary operations on the tree.

Background:
A binary trees is a good data structure for sorting and searching. The tradeoff is a binary tree uses more space
than many other data structures, like singly linked lists. Binary trees also lend themselves to recursive
algorithms which makes the code very compact and elegant. Building a binary tree takes time on

average and time worst case. Searching takes average time on balanced trees and worst

case time on unbalanced trees.

The binary tree structure is made of TreeNodes. Each TreeNode stores a piece of data and has two links to
other TreeNodes or to null (see below).

Data will be Comparable so each new TreeNode can be inserted into the tree based on the data’s order. Here is
a diagram of a binary tree created with integer values.

The “root” node is at the top and is the first node added to the tree. All other nodes are added using a simple
algorithm starting at the root node:

• if the new value is less than current node value, then go down the left subtree. If there is no left subtree, then
create a new node with the new value and point the current node’s left pointer to the new node.

• if the new value is greater than current node value, then go down the right subtree. If there is no right subtree,
then create a new node with the new value and point the current node's right pointer to the new node.

In the diagram below, the new value 7 is added to the binary tree using this algorithm.

O n logn()
O n2() O logn() O n()

Left Data Right

TreeNode

For the purpose of simplicity, we will assume that all nodes contain unique data values (no duplicates).

Assignment:
Download the file BinaryTree.zip from Mr Greenstein’s web site and unzip. It will create a BinaryTree
directory in which you will do all your work. There are four files provided: BinaryTree.java,
BinaryTreeTester.java, BinaryTreeTester2.java, and TreeNode.java.

Implement the following functionality in BinaryTree.java:

1. void add(E value) - add value to the tree (both iterative version and recursive version)

2. void printInorder() - print the tree inorder

3. void printPreorder() - print the tree preorder

4. void printPostorder() - print the tree postorder

5. BinaryTree<E> makeBalancedTree() - a method that returns a balanced version of the tree

6. TreeNode<E> remove(TreeNode<E> node, E value) - a method that removes a value from the subtree
with root node. Precondition: value exists in the subtree.

Testing:
There are two test classes BinaryTreeTester.java and BinaryTreeTester2.java. BinaryTreeTester.java tests
the add function, printing inorder, preorder, and postorder, and creating a balanced tree.
BinaryTreeTester2.java tests the remove function using four different scenarios. Make sure your program
works for all four and change the tree to stress test it.

Your program should produce an output similar to the samples on the following pages.

Sample Run #1:

% java BinaryTreeTester
Random input:
37 39 96 6 44 52 88 30 4 3 55 10 73 98 47 84 91 20 19 26

Tree:
 98
 96
 91
 88
 84
 73
 55
 52
 47
 44
 39
37
 30
 26
 20
 19
 10
 6
 4
 3

Inorder:
3 4 6 10 19 20 26 30 37 39 44 47 52 55 73 84 88 91 96 98

Preorder:
37 6 4 3 30 10 20 19 26 39 96 44 52 47 88 55 73 84 91 98

Postorder:
3 4 19 26 20 10 30 6 47 84 73 55 91 88 52 44 98 96 39 37

**** Building balanced tree ****
 98
 96
 91
 88
 84
 73
 55
 52
 47
 44
39
 37
 30
 26
 20
 19
 10
 6
 4
 3

Sample Run #2:

% java BinaryTreeTester2
 97
 83
 74
 66
 59
 53
47
 35
 33
 28
 25
 23
 19
 14
 5

Test 1: Remove leaf node 19
 97
 83
 74
 66
 59
 53
47
 35
 33
 28
 25
 23
 14
 5

Test 2: Remove node 74 whose right subtree root has no left
 97
 83
 66
 59
 53
47
 35
 33
 28
 25
 23
 14
 5

Test 3: Remove node 23 whose right subtree root has a left
 97
 83
 66
 59
 53
47
 35
 33
 28
 25
 14
 5

Test 4: Remove the root node 47
 97
 83
 66
 59
53
 35
 33
 28
 25
 14
 5
