
SnakeGame.java

Objective: To use a two-dimensional array and a SinglyLinkedList to create the Snake game.

Background:
The Snake Game has been around since the 1970’s in one form or another. The first programs were rendered
completely with ASCII characters on a terminal, then later with more sophisticated graphics on computers and
eventually on handheld devices. The allure of the game is its simplicity in the interface and the rules while
being completely addicting to play.

Our game will be modeled on the original ASCII version played on a two-dimensional grid or “board". The
“snake” will be a series of characters with the head (@) followed by tail segments (***). An example of the
board below shows the snake with a head and a four segment tail.

The user will control the snake and command the head to move up, down, left, or right with the tail trailing
behind. The snake can only move to open locations. You cannot have the snake go off the board or cross over its
tail; otherwise, you lose immediately (the snake dies).

The objective of the game is for the snake to “eat” as many targets as it can. When a target is eaten, the snake’s
tail grows by one segment and a new target location is chosen at random on the board. The longer the tail
grows, the less open spaces are available, and the more difficult it is for the snake to move. In the figure below,
the snake’s tail has become so long it is blocking a clear path to the target.

In our game, we will use an array to represent the board and a SinglyLinkedList to represent the snake.

+ - - - - - - - - - - - - - - - +
| |
| @ * * * |
| * |
| |
| |
| |
| |
| + |
| |
| |
+ - - - - - - - - - - - - - - - +
Score: 0

+ - - - - - - - - - - - - - - - +
| * * * * * * |
| * * |
| @ * * |
| * * * * * * * * |
| * * * |
| * * * |
| * * * * |
| * * * * * |
| + * |
| * * * * * * * |
+ - - - - - - - - - - - - - - - +
Score: 30

Coordinate and Snake classes:
You will need to update the Coordinate class used in the SinglyLinkedList project. A Coordinate object in the
game holds one location on the board. It has a row field and a column field, and the constructor initializes those
fields. There are also two accessor methods, getRow() and getCol(), and an equals() method.

The Snake class is a SinglyLinkedList. Open the Snake file and notice the first line of the class definition.

 public class Snake extends SinglyLinkedList<Coordinate>

The Snake class extends the SinglyLinkedList class which holds a list of Coordinate objects. The Snake class
inherits all of SinglyLinkedList’s methods, so only the constructor(s) needs to be defined. Make the Snake’s
constructor create a default Snake that takes up 5 vertical Coordinates on the board.

SnakeBoard class:
The SnakeBoard class knows how to construct the board, place a Snake and target on the board, and print the
board to the screen. The SnakeBoard will be stored as a two-dimensional array of char’s. The SnakeGame
class will use the SnakeBoard whenever it needs to display the board to the screen.

The SnakeBoard contains the border, the Snake, and the target. The diagram below shows a board with a 10-
by-15 field, the Snake (@****), and the target (+).

The head of the Snake is designated by the at-sign (@), and the Snake always moves head-first. Notice that the
row numbers increase from top-to-bottom and column numbers left-to-right. Coordinates are in the form (row,
column).

Assignment - Coordinate and SnakeBoard:
1) Download the zip file from Mr Greenstein’s web site. Unzip the file and it will create a directory

SnakeGame. Do all of your work in this directory. In the directory you will find the files Snake.java,
SnakeBoard.java, SnakeGame.java, and SnakeGame.jar.

 The SnakeGame.jar file contains a working version of the game using the following command:

 java -cp SnakeGame.jar SnakeGame

 You will need to copy in the classes SinglyLinkedList, ListNode, Prompt, and FileUtils. The remaining
files SnakeBoard.java and SnakeGame.java will be described below.

2) Modify the Coordinate class that was used in SinglyLinkedList. This class should implement
Comparable and have two private int fields: row and column. The constructor inputs and initializes the
row and column values. There needs to be two accessor methods, getRow() and getCol(), a compareTo()
and an equals() method given below. The class should have compareTo() and equals() methods, and must
specify @Override annotation for both.

 @Override
 public int compareTo(Object other)
 {
 …
 }

 @Override
 public boolean equals(Object other)
 {
 return compareTo((Coordinate)other) == 0;
 }

3) Edit the SnakeBoard class given in the zip file. A constructor with the following signature is provided to
initialize the width and height of the board.

 public SnakeBoard(int height, int width)

 Complete the printBoard() method and create as many helper methods as necessary. A main method is
provided for testing your SnakeBoard class.

SnakeGame class:
The SnakeGame class runs the game. It prompts the user and prints the board, it moves the Snake, and it
randomly places the target on the board. It also knows when to end the game. The main fields are the
SnakeBoard, the Snake, the target, and the score. A skeleton version of the code is provided in the zip file.

The SnakeGame knows how the Snake works. It moves the Snake’s head north, south, east, and west, keeps
track of moving its tail in sync with its head, and “grows” its tail. The SnakeGame also places the target ‘+’
into random open spaces and keeps track of the score.

SnakeGame declares the game is ended under these conditions:
1. the user quits the game.
2. the snake moves into the border or into itself.
3. the snake’s head ‘@‘ is surrounded by itself and/or the border and has no place to move.
4. the board has only 5 open spaces. (Maximum score)

SnakeGame provides the following menu of user commands:
 w move north
 s move south
 d move east

 a move west
 h help
 f save game to file
 r restore game from file
 q quit

Assignment - SnakeGame:
5) Edit the SnakeGame class given in the zip file. It needs a constructor to initialize the fields. Initialize the

SnakeBoard to a size of 20 rows and 25 columns. At the beginning of every game, place the Snake and
randomly place the target on the board. Remember, the target cannot be placed on top of the Snake! You
will need the Prompt class to accept input from the user.

6) In SnakeGame, build a “save and restore game” feature so you can resume the game at a later time. You
will need the FileUtils class to read from and write to files. Play the game in SnakeGame.jar and save it to
a file ‘f’. This will create a snakeGameSave.txt file that you can use as a model for your saved game.

