
GridWorld 
Activity 5 - Roadrunner 2 

Objective: To introduce a “stunned” Coyote and Roadrunner characters into the Roadrunner 
simulation in GridWorld.

Background:
Another cartoon character, the Roadrunner, is a fast-footed feathered flightless bird. It lives in Wile E 
Coyote’s world that we created in part 1 of this activity. The Roadrunner likes to run quickly from place 
to place looking for food. The Coyote tries to catch and eat the Roadrunner by placing exploding 
Boulders around the grid. Here is what the Roadrunner looks like:

�
The Roadrunner is so fast, he moves several cells at once. With that speed, he can often run into 
other things like Stones, Boulders, and Coyotes. Stones and the edge of the grid are not a problem, 
he just stops before he hits them. Boulders are a problem because the Boulder explodes and the 
Roadrunner is removed from the grid. When a Roadrunner hits a Coyote, the Roadrunner is fine, but 
the Coyote is knocked back and stunned for some time.

Your job is to introduce both the “stunned” Coyote and the Roadrunner characters and their behaviors 
into this world.

Assignment:
1. Create a SickCoyote class that extends the Actor class. The SickCoyote will act liked the 

stunned Coyote after he is hit by the Roadrunner. He has two fields like a Boulder: a lifetime and 
a threshold length of lifetime. Make the threshold equal to 10. When a SickCoyote is created, set 
the color to null and lifetime to the threshold. A second constructor should pass an integer 
parameter that sets its lifetime. SickCoyote’s act() counts down its lifetime. When the lifetime 
reaches zero, a new (healthy) Coyote is created and replaces the SickCoyote.

�



2. Test your SickCoyote class. Create a SickCoyoteRunner that places 4 SickCoyotes with 
different lifetime parameters on a 5 by 5 grid. Run the simulation and watch to see that all 
SickCoyotes are replaced by Coyotes.

3. Create an RR class (Roadrunner) that extends the Critter class. An RR runs in a straight line 
three cells at a time or when it runs into an actor or the edge of the grid, whichever comes first.

The RR works in this way:

a. When an RR is created, its color is null and its direction is north. An RR does not process any 
actors.

b. The RR gets all possible locations to move that form a clear path (empty cells) between him 
and his destination up to 3 cells away in a compass direction (north, northeast, etc). An RR can 
“bump” into Boulders and Coyotes, which means an RR can land on their locations. An RR never 
“bumps” into Stones, SickCoyotes, or Kabooms and always chooses empty locations short of 
running into those actors or off the grid.

c. RR selects its destination location at random from its list of possible locations.

d. When an RR lands on a Boulder, the Boulder explodes and RR goes bye-bye. In effect, the 
Boulder is replaced with a Kaboom and the RR is removed from the grid.

e. When an RR lands on a Coyote, the RR “hurts” the Coyote and bumps him off his cell. This 
means the Coyote is removed from the grid, the RR is moved into the Coyote’s location, and a 
new SickCoyote is placed in a random adjacent empty cell. (The SickCoyote will eventually 
replace itself with a “well” Coyote.)

Here are some examples of “bumping”. If RR “bumps” into the Coyote, he takes the Coyote’s 
spot and a new SickCoyote is placed in an adjacent empty cell (figure on the right).

� �



If RR “bumps” into the Boulder, RR is removed from the grid and the Boulder is replaced with a 
Kaboom (figure on the right).

� �

6. Mr Greenstein provided a RRRunner class in your zip file that places Coyotes and RRs on a 10 
by 10 grid. Use RRRunner to test your code.


