
GridWorld 
Activity 5 - Roadrunner 1 

Objective: To create an exploding Boulder and Wile E Coyote simulation in GridWorld.

Background:
Wile E Coyote is a cartoon coyote who likes to chase a Roadrunner, another cartoon character, and 
put bombs in its path. You will create a Coyote critter to represent Wile E Coyote. You will also create 
three actors. The first is a Stone which is like a Rock, but the Stone can change into a Boulder. The 
Boulder is similar to a Rock, but it explodes after some time. A Kaboom is an actor that looks like an 
explosion and it shows up when the Boulder explodes. A Kaboom lasts only a few steps before it 
disappears. If the Coyote walks into a Boulder, the Boulder explodes and the Coyote is removed 
from the grid.

Assignment:
1. Create a Kaboom class that extends the Actor class. The Kaboom has two fields. One is the 

lifetime of the Kaboom, an integer number representing the number of steps (calls to act()) before 
it disappears. The other is an integer threshold constant (final int) that should be set to 3. In the 
constructor, set the color to null and initialize the lifetime to the threshold number. The Kaboom 
act() counts down its lifetime, then removes itself from the grid. Here is the graphic of a Kaboom:

2. Create a Boulder class that extends the Actor class. The Boulder has the same two fields as 
Kaboom, but the threshold constant means something different. It is used to determine when the 
Boulder turns red just before it explodes. In the constructor, set the color to null and initialize the 
lifetime to a random number between 1 and 200 inclusive. A second constructor, similar to the 
first, passes an integer number that sets the lifetime. The Boulder act() counts down its lifetime. 
When the lifetime is less than the threshold, set the color to red. When the lifetime is equal to 0, 
replace the Boulder with a Kaboom. Here is the graphic of a Boulder:

3. Create a Stone class that extends the Rock class. The Stone has the same two fields as 
Boulder, but the threshold constant is used to determine when the Stone turns green. Green 
means it is about to turn into a Boulder. In the constructor, set the color to null and initialize the 
lifetime to a random number between 1 and 200 inclusive. A second constructor is similar to the 
first but passes an integer number that sets the lifetime. The Stone act() counts down its lifetime. 



When the lifetime is less than the threshold, set the color to green. When the lifetime is equal to 0, 
replace the Stone with a Boulder. The Stone will look just like a Rock.

4. Test your classes. Use the StoneRunner class provided. It places Stones on a 20 by 20 grid. Run 
the simulation and watch to see each Stone turn green, then be replaced by a Boulder. When the 
Boulder turns red and some steps elapse, it is replaced by a Kaboom which disappears after a 
couple more steps.

5. Create a Coyote class (Wile E Coyote) that extends the Critter class. The Coyote drops Stones 
as he wanders around the grid. He moves in straight lines, but stops every couple steps to drop a 
stone and change direction. Here is what the Coyote looks like:

The Coyote works in this way:

a. When a Coyote is created, it has a color of null and its current direction is one randomly 
selected from 8 compass directions in 45˚ increments from 0 to 315.

b. The Coyote walks in his current direction one cell at a time until he meets another Actor or 
bumps into the edge of the grid or walks 5 cells in a row, whichever comes first. If he walks into a 
Boulder, the Boulder explodes (replaced by a Kaboom), and the Coyote is removed from the 
grid.

c. At the end of part b (if the Coyote is still on the grid), the Coyote waits for 5 steps (sleeps). If he 
had walked into the wall, he picks a new direction at random, then repeats part b above. If he had 
not walked into a wall, he puts a Stone in an adjacent open cell, picks another direction at 
random, and repeats part b. (This prevents the Coyote from boxing himself in with Stones and 
the edge of the grid.)

A note about removing a Critter from the grid. The removeSelfFromGrid method will only work if 
it is the last executed method in the makeMove method. The safest thing to do is to put a return 
statement immediately following removeSelfFromGrid in the makeMove method to insure no 
other statements are executed.

6. Create a CoyoteRunner that places 2 Coyotes on a 10 by 10 grid. Run the simulation. Watch to 
see each that the Coyote walks, waits, places Stones, and explodes when it walks into 
Boulders.



Here is a screen shot of Coyotes, Stones (black or green), and Boulders (gray or red). One Coyote 
is about to walk into a Boulder (lower left).



Here is a screen shot after the Coyote walks into the Boulder.



Here is a screen shot a few steps later.


