
AP	Computer	Science	A	 Name	___	
GridWorld	-	Ac8vity	3	 Date	____________________________	Period	__________	

Ac#vity:	
A)	Look	at	the	following	class	files:	

 GridWorldCode/framework/info/gridworld/grid/Grid.java
 GridWorldCode/framework/info/gridworld/grid/Location.java

Read:	 Pages	16	to	18	in	the	GridWorld	Student	Manual	

Ques#ons:	
Consider	these	statements	when	answering	the	following	ques8ons.	
 Location loc1 = new Location(4, 3);
 Location loc2 = new Location(3, 4);

1)	How	would	you	access	the	row	value	for	loc1?	

2)	What	is	the	value	of	b	aPer	the	following	statement	is	executed?	

 boolean b = loc1.equals(loc2);

3)	What	is	the	value	of	loc3	aPer	the	following	statement	is	executed?	

 Location loc3 = loc2.getAdjacentLocation(Location.SOUTH);

4)	What	is	the	value	of	dir	aPer	the	following	statement	is	executed?	

 int dir = loc1.getDirectionToward(new Location(6, 5));

5)	How	does	the	getAdjacentLocation	method	know	which	adjacent	loca8on	to	return?	

Read:	 Pages	20	to	21	in	the	GridWorld	Student	Manual	

Ac#vity:	
B)	Open	the	API	for	the	Grid	interface	in	your	web	browser.	
 GridWorldCode/javadoc/info/gridworld/grid/Grid.html

Ques#ons:	
6)	How	can	you	obtain	a	count	of	the	objects	in	a	grid?	How	can	you	obtain	a	count	of	the	empty	loca8ons	in	a	bounded	
grid?	

7)	How	can	you	check	if	loca8on	(10,10)	is	in	a	grid?	

8)	Grid	contains	method	declara8ons,	but	no	code	is	supplied	in	the	methods.	Why?	Where	can	you	find	the	
implementa8ons	of	these	methods?	

9)	All	methods	that	return	mul8ple	objects	return	them	in	an	ArrayList.	Do	you	think	it	would	be	a	be^er	design	to	
return	the	objects	in	an	array?	Explain	your	answer.	

Read:	 Pages	22	to	23	in	the	GridWorld	Student	Manual	

Ac#vity:	
C)	Open	the	following	class	file	in	Geany	and	answer	the	ques8ons	below.	
 GridWorldCode/framework/info/gridworld/actor/Actor.java

Ques#ons:	
10)	Name	three	proper8es	of	every	actor.	

11)	When	an	actor	is	constructed,	what	is	its	direc8on	and	color?	

12)	Why	do	you	think	that	the	Actor	class	was	created	as	a	class	instead	of	an	interface?	

13)	Work	with	the	BoxBugRunner.	Can	an	actor	put	itself	into	a	grid	twice	without	first	removing	itself?	Can	an	actor	
remove	itself	from	a	grid	twice?	Can	an	actor	be	placed	into	a	grid,	remove	itself,	and	then	put	itself	back?	Try	it	out.	
What	happens?	

14)	How	can	an	actor	turn	90	degrees	to	the	right?	

Read:	 Pages	24	to	25	in	the	GridWorld	Student	Manual	

Ac#vity:	
D)	Look	at	the	following	class	files:	
 GridWorldCode/framework/info/gridworld/actor/Bug.java
 GridWorldCode/framework/info/gridworld/actor/Flower.java
 GridWorldCode/framework/info/gridworld/actor/Rock.java

Ques#ons:	
15)	Which	statement(s)	in	the	canMove	method	ensures	that	a	bug	does	not	try	to	move	out	of	its	grid?	

16)	Which	statement(s)	in	the	canMove	method	determines	that	a	bug	will	not	walk	into	a	rock?	

17)	Which	methods	of	the	Grid	interface	are	invoked	by	the	canMove	method	and	why?	

18)	Which	method	of	the	Location	class	is	invoked	by	the	canMove	method	and	why?	

19)	Which	methods	inherited	from	the	Actor	class	are	invoked	in	the	canMove	method?	

20)	What	happens	in	the	move	method	when	the	loca8on	immediately	in	front	of	the	bug	is	out	of	the	grid?	

21)	Is	the	variable	loc	needed	in	the	move	method,	or	could	it	be	avoided	by	calling	getLocation()	mul8ple	8mes?	

22)	Why	do	you	think	the	flowers	that	are	dropped	by	a	bug	have	the	same	color	as	the	bug?	

23)	When	a	bug	removes	itself	from	the	grid,	will	it	place	a	flower	into	its	previous	loca8on?	

24)	Which	statement(s)	in	the	move	method	places	the	flower	into	the	grid	at	the	bug’s	previous	loca8on?	

25)	If	a	bug	needs	to	turn	180	degrees,	how	many	8mes	should	it	call	the	turn	method?	

Ac#vity:	
E)	Make	a	new	directory	Ac#vity3	inside	the	GridWorldCode	directory	(GridWorldCode/Ac#vity3).	Do	all	your	work	in	
this	directory.	(Note:	This	ac8vity	is	different	than	what	is	men8oned	in	the	GridWorld	Student	Manual.)	

Create	a	new	class	called	Blossom	that	extends	the	Flower	class.	The	Blossom	starts	out	green	and	gets	darker	just	like	a	
Flower.	A	Blossom	has	a	life8me,	and	at	the	end	of	its	life8me	it	is	removed	from	the	grid	(removeSelfFromGrid	method	
in	the	Actor	API).	Create	two	constructors	for	the	Blossom.	A	no-args	constructor	that	sets	the	life8me	to	10	(steps),	and	
a	second	constructor	with	a	parameter	that	specifies	the	life8me.	

Create	a	new	class	called	Jumper	that	extends	the	Bug	class.	Jumper	is	the	color	blue.	This	actor	can	move	forward	two	
cells	in	each	move,	so	it	can	“jump”	over	obstacles,	like	rocks	and	flowers	(and	blossoms).	If	there	are	no	empty	cells	two	
away	in	its	current	direc8on,	it	tries	new	direc8ons	un8l	it	finds	and	moves	to	an	empty	cell	two	away.	If	it	moves	in	a	
different	direc8on,	it	faces	in	the	direc8on	it	just	moved.	Instead	of	leaving	a	Flower	like	a	Bug	does,	it	leaves	a	Blossom	
when	it	moves.	

Here	are	some	other	things	a	Jumper	should	do.	

a)	 If	all	of	the	cells	two	away	are	occupied,	the	Jumper	moves	one	cell	and	tries	to	jump	again.	(You	don’t	want	an	
infinite	loop.)	

b)	 Each	Blossom	has	a	random	life8me,	some	short	and	some	long.	
c)	 The	Jumper	has	a	parameter	that	determines	how	far	it	will	move	in	one	direc8on	without	obstacles	before	it	

changes	direc8on.	
d)	 A	Jumper	does	not	land	on	Blossoms.	

F)	Download	the	JumperRunner	from	the	web	site	to	test	Jumper.	The	code	is	shown	below.	

import info.gridworld.grid.Grid;
import info.gridworld.grid.BoundedGrid;
import info.gridworld.grid.Location;
import info.gridworld.actor.ActorWorld;
import info.gridworld.actor.Actor;
import info.gridworld.actor.Bug;
import info.gridworld.actor.Rock;
import info.gridworld.actor.Flower;

public class JumperRunner
{
 public static void main(String[] args)
 {
 BoundedGrid<Actor> mygrid = new BoundedGrid<Actor>(20,20);
 ActorWorld world = new ActorWorld(mygrid);

 world.add(new Location(0,0),new Jumper());
 world.add(new Location(0,1),new Jumper());
 world.add(new Location(1,0),new Jumper());

 world.add(new Location(1,1),new Rock());
 world.add(new Location(1,2),new Bug());
 world.add(new Location(0,3),new Bug());

 world.add(new Location(2,6),new Jumper());
 world.add(new Location(2,7),new Jumper());
 world.add(new Location(1,7),new Rock());
 world.add(new Location(1,6),new Rock());
 world.add(new Location(0,7),new Rock());

 world.add(new Location(19,1),new Rock());

 world.show();
 }
}

