
SimpleCalc

Objective: To use stacks to emulate a simple arithmetic calculator.

Background:
Most people learn to write arithmetic expressions like this:

which can be entered into a TI calculator, like the one on the right, like this:

When you press “=“ (Enter), the TI calculator evaluates the expression and displays the answer 0.342359768 . A
similar calculator is builtin to Linux called “bc” for basic calculator. Using bc looks like this:

% bc
scale=9
3*(15-3.2)/(11*(5+8.8/2))
.342359767

The “scale” means the number of decimal places to perform the calculation. (Notice that the TI rounds up and
bc truncates the least significant digit.) bc is a full function scientific calculator with its own programming
language.

We are going to write a simple version of bc that only does arithmetic functions “+”, “-“, “*”, “/“, parentheses
“(“ and “)”, exponents “^”, and modulus “%”. First, we must learn how computers evaluate expressions.

Infix and Postfix Notation
We are taught to write five-plus-three just like we speak it: 5 + 3. This is called “infix” notation because the
operator (“+”) is in-between the operands 5 and 3. Infix notation follows precedence rules, so expressions
require the occasional parentheses to force certain operations to be done first. For example, the parentheses in
5 * (2 + 3) forces the addition before the multiplication. Without parentheses, multiplication takes precedence
over addition and you get a different (incorrect) answer.

Infix is not the only way to write an expression. Postfix puts the operator after (“post”) the operands. For
example, infix 5 + 3 would be written 5 3 + . To us postfix looks strange, but to a computer the format makes
perfect sense. The computer’s ALU (Arithmetic Logic Unit) stores two numbers in registers before the
operation can take place.

Consider our expression (2 + 3) * 5 . In postfix notation it would be 2 3 + 5 * . This would be interpreted as
“operands two and three perform addition”, then “their result and five perform multiplication.” Operators in
postfix notation are performed left-to-right. Notice that operator precedence is built into the syntax and
parentheses are unnecessary. Here are more examples:

3*(15− 3.2)
11*(5+8.8 / 2)

3*(15− 3.2) / (11*(5+8.8 / 2))

 Infix (following precedence rules) Postfix (performed left-to-right)
 5 + 6 * 3 / 4 - 1 5 6 3 * 4 / + 1 -
 4 + 2 ^ 3 4 2 3 ^ +
 4 * (3 + 2) - 18 / (6 * 3) 4 3 2 + * 18 6 3 * / -
 (28 * 28 - 4 / (5 + 3) * 6.5) + 3.4 28 28 * 4 5 3 + / 6.5 * - 3.4 +

Using Stacks
Stacks are useful for many applications including evaluating expressions like those above. Hewlett-Packard has
built calculators since the 1970’s that use stacks and postfix notation (they call RPN
for “Reverse Polish Notation”) to evaluate expressions without parentheses. The user
“enters” numbers onto the stack by pushing “Enter.” To perform an operation, the
user pushes an operator key (e.g. “+”). This operator key does the following: the two
numbers on the top of the stack are popped, the operation of the numbers is
evaluated, and the result is pushed back on the stack. In most HP calculators, there is
at least 4 operands you can push onto the stack.

Stacks are also valuable to evaluate infix notation from left-to-right. To do so requires two stacks, an operand
stack and an operator stack. Let’s use the simple example expression 4 + 9 * 7 because the multiplication takes
precedence but is listed last reading left-to-right. Below are diagrams of the stack operations.

In (1) through (3) the expression is read left-to-right. The operands 4 and 9 and operator + are pushed on their
respective stacks. The addition is delayed in case the next operator takes higher precedence. In (4) the operator
* is compared to the top of the operator stack (peek at +). Since addition (+) is lower precedence to
multiplication (*), the operator * is pushed on the stack to await the precedence of the next operator.

In (5) above, the operand 7 is the end of the expression, so 9 and * are popped, 9 * 7 is evaluated, and the result
63 is pushed on the stack. In (6), operands 63 and 4 and operator + are popped, 4 + 63 is evaluated, and the
result 67 is pushed on the operand stack. In the final panel (7), the operator stack is empty and there is no more
expression to evaluate; therefore, the answer 67 is popped from the operand stack.

Important!!! Do not bother to do syntax checking on the expressions. We will assume that all user input is
syntactically correct. In other words, no consecutive operators (e.g. “2 * * 3”), no consecutive operands
(e.g. “2 * 3 4 + 5” or “pi 4.5 ^ 2”), all parentheses are matched (i.e. each left “(“ followed by a right “)”), etc.

Assignment:
Download the SimpleCalc files from the GitHub repository. Create the directory “SimpleCalc” and do all of
your work in that directory.

In the SimpleCalc directory you will find three files: Stack.java, ExprUtils.java, and SimpleCalc.java.
Stack.java is the stack interface with four method signatures. ExprUtils.java tokenizes the expressions from
the user in a method ArrayList<String> tokenizeExpression(String expression). SimpleCalc.java is an
incomplete class in which you will create your infix stack-based calculator.

1) You will need a stack class for the calculator. In this project, we will use an ArrayList to emulate a stack.
Mr Greenstein will do a type-along with you to create the new ArrayStack.java that will be used by your
SimpleCalc.

2) You will first complete the following SimpleCalc.java methods:
 void runCalc() - prompts the user for expressions, runs the expression evaluator, and displays the answer.
 void printHelp() - prints the help message

3) The final method to complete is the expression evaluator:

 double evaluateExpression(List<String> tokens)

 The tokens parameter above is the output of the tokenizeExpression method in ExprUtils.java. You will
use the two stacks provided in SimpleCalc.java to perform the evaluation: ArrayStack<Double>
valueStack for the operands and ArrayStack<String> operatorStack for the operators. Notice that
operands are stored as Doubles and operators are stored as Strings.

A sample run:

% java SimpleCalc
Welcome to SimpleCalc!!!

 -> 5 + 6 * 3 / 4 - 1
8.5
 -> 4 + 2 ^ 3
12.0
 -> 4 * (3 + 2) - 18 / (6 * 3)
19.0
 -> (28 * 28 - 4 / (5 + 3) * 6.5) + 3.4
784.15
 -> h
Help:
 h - this message
 q - quit

Expressions can contain:
 integers or decimal numbers
 arithmetic operators +, -, *, /, %, ^
 parentheses '(' and ')'

 -> q

Thanks for using SimpleCalc! Goodbye.

