
AP	Computer	Science	 Name	___	
Picture	Lab	6:	Edge	Detec;on	 Date	____________________________	Period	__________	

Objec&ve:	To	work	on	methods	to	do	simple	edge	detec;on.	

Background:	
Detec;ng	edges	is	a	common	image	processing	problem.	For	example,	digital	cameras	oFen	feature	face	detec;on.	Some	robo;c	
compe;;ons	require	the	robots	to	find	a	ball	using	a	digital	camera,	so	the	robot	needs	to	be	able	to	“see”	a	ball.	

One	way	to	look	for	an	edge	in	a	picture	is	to	compare	the	color	at	the	current	pixel	with	the	pixel	in	the	next	column	to	the	right.	If	
the	colors	differ	by	more	than	some	specified	amount,	this	indicates	that	an	edge	has	been	detected	and	the	current	pixel	color	
should	be	set	to	black.	Otherwise,	the	current	pixel	is	not	part	of	an	edge	and	its	color	should	be	set	to	white	(see	the	figures	below).	

How	do	you	calculate	the	difference	between	two	colors?	The	formula	for	the	difference	between	two	points	 	and	 	

is	 .	Likewise,	the	difference	between	two	colors	 	and	 	is	

.	The	colorDistance	method	in	the	Pixel	class	uses	this	calcula;on	to	return	the	

difference	between	the	current	pixel	color	and	a	passed	color.	

Below	is	a	swan	picture	and	its	edge	detected	version	to	the	right.	The	method	is	edgeDetec&on	in	Picture.java.	The	edge	detec;on	
algorithm	measures	the	color	distance	between	each	pixel	and	its	immediate	right	(next	column)	neighbor	to	determine	if	the	pixel	is	
at	an	edge.	If	the	color	distance	between	the	two	pixels	is	greater	than	a	set	threshold	value,	then	an	edge	is	detected	and	the	
resul;ng	picture’s	pixel	is	turned	black.	Otherwise,	the	resul;ng	pixel	is	turned	white	deno;ng	no	edge.	For	the	picture	below,	each	
pixel	measured	the	color	distance	to	its	right	pixel	neighbor	(next	column	over).	

	

Ac&vity:	
A1)	Write	an	edge	detec;on	method	that	detects	edges	by	comparing	each	pixel	with	the	pixel	below.	

Create	the	new	method		Picture edgeDetectionBelow(int threshold)	inside	Picture.java	that	uses	the	pixel	below	(next	
row)	to	calculate	the	color	distance	and	returns	a	black-and-white	edge	picture.	

Use	the	following	method	comments,	signature,	and	code	to	begin	your	method:	

 /** Method that creates an edge detected black/white picture
 * @param threshold threshold as determined by Pixel’s colorDistance method
 * @return edge detected picture
 */
 public Picture edgeDetectionBelow(int threshold)
 {
 Pixel[][] pixels = this.getPixels2D();
 Picture result = new Picture(pixels.length, pixels[0].length);
 Pixel[][] resultPixels = result.getPixels2D();

x1, y1() x2, y2()
x2 − x1()2 + y2 − y1()2 red1,green1,blue1() red2 ,green2 ,blue2()

red2 − red1()2 + green2 − green1()2 + blue2 − blue1()2

Green	Screen	
Another	popular	effect	is	the	“green	screen”.	On	television,	they	make	a	person	or	object	“appear”	somewhere	else.	This	is	done	by	
superimposing	a	picture	of	the	subject	in	front	of	a	picture	of	a	loca;on.	For	example,	below	are	two	photos	of	a	cat	and	mouse	each	
with	a	green	background.	The	third	photo	is	a	couch	in	a	library.	

	 	

	

By	scaling	and	superimposing	the	cat	and	mouse	onto	the	library	background,	the	two	animals	appear	to	be	in	the	same	room	
together.	

	

Ac&vity:	
A2)	Download	greenScreenImages.zip	and	extract	the	directory.	It	contains	two	backgrounds:	IndoorHouseLibraryBackground.jpg	
and	IndoorJapaneseRoomBackground.jpg.	In	addi;on,	there	are	six	green	screen	images	of	cats,	a	dog,	a	mouse,	and	Minions.	Write	
a	method	that	returns	an	image	of	two	green	screen	images	superimposed	on	the	background.	Everything	must	look	natural	and	in	
scale.	Points	will	be	deducted	if	the	images	are	out	of	scale	or	look	unnatural.	Use	PictureExplorer	on	the	green	screen	images	to	
determine	the	green	you	must	remove.	

Create	the	new	method		Picture greenScreen()	inside	Picture.java	that	returns	a	green	screen	result.	

Important!!!	This	project	is	different	than	all	the	others	because	you	will	need	to	hardcode	the	files	that	you	use	for	background	and	
green	screen	images	inside	your	greenScreen	method	in	Picture.java.	Use	only	the	pictures	provided	by	Mr	Greenstein	for	
background	and	green	screen	images.	Images	must	start	with	the	directory	“greenScreenImages/“	in	the	file	name.	

Here	is	an	example	of	a	green	screen	method	inside	Picture.java:	

 /** Method that creates a green screen picture
 * @return green screen picture
 */
 public Picture greenScreen()
 {
 // Get background picture
 Picture bkgnd = new Picture(“greenScreenImages/IndoorHouseLibraryBackground.jpg”);
 Pixels[][] bkgndPixels = bkgnd.getPixels2D();
 // Get cat picture
 Picture cat = new Picture("greenScreenImages/kitten1GreenScreen.jpg");
 Pixel[][] catPixels = cat.getPixels2D();
 // Get mouse picture
 Picture mouse = new Picture(“greenScreenImages/mouse1GreenScreen.jpg”);
 Pixel[][] mousePixels = mouse.getPixels2D();
 …

Here	is	an	example	of	the	test	method	inside	PictureTester.java:	

 /** Method to test greenScreen */
 public static void testGreenScreen()
 {
 // choose any picture to start since it will *not* be used
 Picture pic = new Picture(“images/beach.jpg");
 Picture gScreen = pic.greenScreen();
 gScreen.explore();
 }

Ac&vity	
A3)	Write	a	method	to	rotate	a	picture	a	certain	angle.	

Create	the	new	method		Picture rotate(double angle)	inside	Picture.java	that	rotates	a	picture	in	radian	measure	and	
returns	a	rotated	picture.	Rota;on	causes	issues	that	you	will	need	to	fix	as	part	of	the	method.	

The	transforma;on	formulas	for	calcula;ng	a	rotated	pixel	are	the	following:	

	

	

where	 	is	the	original	loca;on	and	 	is	the	new	loca;on.	Remember,	columns	represent	the	x-direc;on	and	rows	

represent	the	y-direc;on.	

You	will	need	to	write	your	code	to	compensate	and	fix	issues	that	happen	when	you	rotate,	for	example:	

1. Rota;on	happens	around	(0,0)	as	the	center,	so	the	picture	will	need	to	be	moved	to	center	it.	
2. The	new	picture	will	need	to	be	bigger	to	hold	the	rotated	image.	At	least	90%	of	the	picture	must	show	in	the	rotated	version.	
3. Pixels	will	“drop	out”,	meaning	that	rota;on	does	not	fill	all	of	the	space.	“Drop	out”	causes	pixel-sized	holes	throughout	the	

picture.	You	will	need	to	find	a	way	to	fill	these	spaces	to	create	a	complete	picture.	

A	rotated	picture	with	“drop	out”	looks	like	this:	

	

x1 = x0 cosθ − y0 sinθ
y1 = x0 sinθ + y0 cosθ

x0, y0() x1, y1()

You	will	need	to	“fill	in”	all	of	the	pixels	so	the	picture	looks	whole	again,	like	below.	

	

Use	the	following	method	comments,	signature,	and	code	to	begin	your	method:	

 /**
 * Rotate image in radians, clean up "drop-out" pixels
 * @param angle angle of rotation in radians
 * @return Picture that is rotated
 */
 public Picture rotate(double angle) {

Mr	Greenstein	will	check	the	rota&ons	of		 		radians	(30˚)	and		 		radians	(45˚).	Be	sure	to	handle	both	of	these	cases.	
π
6

π
4

