
AP	Computer	Science	A	 Name	___	
Picture	Lab	4C:	Shi8ing	Pixels	 Date	____________________________	Period	__________	

Objec&ve:	To	shi8	the	pixels	in	a	picture	and	produce	interes@ng	effects.	

Background:	
Now	that	we	know	the	basics	in	modifying	pictures,	let’s	try	some	effects.	Photoshop	can	perform	a	host	of	different	effects	on	
photos	by	simply	modifying	pixels.	We	can	emulate	those	effects	with	some	simple	techniques.	

One	effect	is	to	shi8	pixels	to	the	le8	and	right.	This	can	cause	interes@ng	distor@ons	like	the	before	and	a8er	photos	below.	

� 	 � 	

We	will	take	this	one	step	at	a	@me,	star@ng	with	simple	effects	and	working	to	more	difficult	ones.	

Ac&vi&es:	

A1)	Swap	Le9	and	Right:	In	this	ac@vity,	we	will	shi8	pixels	to	the	right	and	wrap	around	to	the	le8.	The	le8	half	of	the	picture	will	
end	up	on	the	right	side.	

� 	

The	effect	is	created	by	shi8ing	pixels	to	the	right	and	wrapping	half	of	them	around	to	the	le8.	The	key	is	to	add	half	the	width	to	
the	column,	then	modulus	the	width.	

newColumn	=	(column	+	width	/	2)	%	width	

Create	a	new	method		Picture swapLeftRight()	inside	Picture.java	to	accomplish	this	effect.	

�1

A2)	Stair	Step:	A	jagged	picture	can	be	made	using	stair	steps	of	shi8ed	pixels.	The	le8	picture	has	10	stair	steps	and	each	step	shi8s	
10	pixels.	The	right	picture	has	400	stair	steps	and	shi8s	each	step	1	pixel.	Pixels	wrap	around	right	to	le8.	

� 	 � 	

Create	a	new	method		Picture stairStep(int shiftCount, int steps)	inside	Picture.java	to	accomplish	this	effect.	
shi9Count	is	the	number	of	pixels	to	shi8	right	at	each	stair	step.	steps	is	the	number	of	stair	steps.	Apply	this	effect	to	one	of	your	
own	pictures.	

Create	a	stairStep	method	inside	Picture.java	using	the	following	signature.	

 /* <Description here>
 * @param shiftCount The number of pixels to shift to the right
 * @param steps The number of steps
 * @return The picture with pixels shifted in stair steps
 */
 public Picture stairStep(int shiftCount, int steps)

�2

A3)	Liquify:		Photoshop	has	a	“liquify”	effect	which	distorts	a	picture	as	you	drag	the	mouse	across	it.	In	this	ac@vity,	we	will	distort	
the	horizontal	center	of	the	picture	by	shi8ing	pixels	horizontally.	

� 	 � 	

To	smooth	out	the	distor@on,	a	Gaussian	curve	is	used	to	calculate	the	horizontal	shi8.	

� 	

The	formula	for	this	curve	is	

� 	

where	� 	is	height	of	the	curve,	� 	is	the	center	of	the	curve,	and	� 	is	the	standard	devia@on	or	width	of	the	“bell”.	The	func@on	is	

applied	such	that	� 	is	the	row,	� 	is	half	the	height,	and	� 	is	the	pixel	shi8	to	the	right	(by	columns).	Transla@ng	this	to	pixel	

offset,	in	which	� 	is	maxHeight	and	� 	is	bellWidth,	the	code	is	

double exponent = Math.pow(row - height / 2.0, 2) / (2.0 * Math.pow(bellWidth, 2));

int rightShift = (int)(maxHeight * Math.exp(- exponent));

As	pixels	shi8	to	the	right,	be	sure	to	wrap	the	pixels	around	from	the	right	to	the	le8.	Try	different	values	for	bellWidth	and	
maxHeight	to	get	a	desirable	effect.	Apply	this	effect	to	one	of	your	own	pictures.	Mr	Greenstein	suggests	a	maxHeight	around	100	
pixels.	

Create	a	liquify	method	inside	Picture.java	using	the	following	signature.	

 /* <Description here>
 * @param maxFactor Max height (shift) of curve in pixels
 * @return Liquified picture
 */
 public Picture liquify(int maxHeight)

f (x) = Ae
−

x−x0()2
2d2

⎛

⎝
⎜

⎞

⎠
⎟

A x0 d
x x0 f (x)

A d

�3

A4)	Waves:		Another	varia@on	on	the	liquify	effect	is	to	create	oscilla@ng	distor@ons	in	a	picture.	Instead	of	one	Gaussian	curve,	the	
whole	picture	distorts	le8	and	right	in	a	sinusoidal	pa`ern,	like	the	picture	below	on	the	right.	

� 	 � 	

A	sinusoidal	func@on	is	used	to	calculate	the	horizontal	shi8.	The	formula	for	a	sinusoid	is	

� 	

where	� 	is	the	amplitude	of	the	wave,	� 	is	the	frequency,	and	� 	is	the	phase	shi8.	� 	is	the	pixel	shi8	and	the	range	is	� 	to	

� .	

Translate	this	func@on	into	code.	Since	the	formula	produces	posi@ve	and	nega@ve	values,	be	sure	to	handle	pixels	wrapping	to	the	
le8	and	to	the	right.	Try	different	values	for	amplitude	and	frequency	to	get	a	desirable	effect.	Apply	this	effect	to	one	of	your	own	
pictures.	

Create	a	wavy	method	inside	Picture.java	using	the	following	signature.	

 /* <Description here>
 * @param amplitude The maximum shift of pixels
 * @return Wavy picture
 */
 public Picture wavy(int amplitude)

g x() = Asin 2π fx +ϑ()

A f ϑ g(x) −A
A

�4

