
AP	Computer	Science	 Name	___	
Picture	Lab	4A:	Modifying	a	Picture	 Date	____________________________	Period	__________	

Objec&ve:	To	modify	all	the	pixels	in	a	picture	and	introduce	students	to	interfaces,	abstract	methods,	constants,	and	inheritance.	

Background:	
Even	though	digital	pictures	have	millions	of	pixels,	modern	computers	are	so	fast	that	they	can	process	all	of	them	quickly.	You	will	
write	methods	in	the	Picture	class	that	modify	digital	pictures.	The	Picture	class	inherits	from	the	SimplePicture	class	and	the	
SimplePicture	class	implements	the	DigitalPicture	interface	as	shown	in	the	Unified	Modeling	Language	(UML)	class	diagram	below.	

A	UML	class	diagram	shows	classes	and	the	relaNonships	between	the	classes.	Each	class	is	shown	in	a	box	with	the	class	name	at	the	
top.	The	middle	area	shows	aOributes	(instance	or	class	variables)	and	the	boOom	area	shows	methods.	The	open	triangle	points	to	
the	class	that	the	connected	class	inherits	from.	The	straight	line	links	show	associaNons	between	classes.	AssociaNon	is	also	called	a	
“has-a”	relaNonship.	The	numbers	at	the	end	of	the	associaNon	links	give	the	number	of	objects	associated	with	an	object	at	the	
other	end.	For	example,	in	the	figure	below	it	shows	that	one	Pixel	object	has	one	Color	object	associated	with	it	and	that	a	Color	
object	can	have	zero	to	many	Pixel	objects	associated	with	it.	You	may	noNce	that	the	UML	class	diagram	doesn’t	look	exactly	like	
Java	code.	UML	is	not	language	specific.	

	

Ac&vity:	
A1)		Open	SimplePicture.java	and	look	for	the	method	getPixels2D().	NoNce	how	it	creates	a	2D	array	of	Pixel	objects	and	
returns	the	array.	

A2)		Open	Picture.java	and	look	for	the	method	getPixels2D().	NoNce	how	it	uses	the	method	getPixels2D().	

Ques&ons:	
Assume	you	are	wriNng	code	using	the	Picture	Lab	classes.	

Q1)	You	write	the	following	line	of	code.	Does	it	compile?	

DigitalPicture p = new DigitalPicture();

Q2)	Assuming	that	a	no-argument	constructor	exists	for	SimplePicture,	would	the	following	code	compile?	

DigitalPicture p = new SimplePicture();

Q3)	Assuming	that	a	no-argument	constructor	exists	for	Picture,	does	the	following	code	compile?	

DigitalPicture p = new Picture();

Q4)	Assuming	that	a	no-argument	constructor	exists	for	Picture,	does	the	following	code	compile?	

SimplePicture p = new Picture();

Q5)	Assuming	that	a	no-argument	constructor	exists	for	SimplePicture,	does	the	following	code	compile?	

Picture p = new SimplePicture();

Interfaces	and	Pictures	

DigitalPicture	is	an	interface.	An	interface	most	o_en	only	has	public	abstract	methods.	An	abstract	method	is	not	allowed	to	have	a	
body.	NoNce	that	none	of	the	methods	declared	in	DigitalPicture	have	a	body.	If	a	method	can’t	have	a	body,	what	good	is	it?	

Interfaces	are	useful	for	separaNng	what	from	how.	An	interface	specifies	what	an	object	of	that	type	needs	to	be	able	to	do	but	not	
how	it	does	it.	You	cannot	create	an	object	using	an	interface	type.	A	class	can	implement	(realize)	an	interface	as	SimplePicture	
does.	A	non-abstract	class	provides	bodies	for	all	the	methods	declared	in	the	interface,	either	directly	or	through	inheritance.	You	
can	declare	a	variable	to	be	of	an	interface	type	and	then	set	that	variable	to	refer	to	an	object	of	any	class	that	implements	that	
interface.	For	example,	Java	has	a	List	interface	that	declares	the	methods	that	a	list	should	have	such	as	add,	remove,	and	get,	etc.	
But,	if	you	want	to	create	a	List	object	you	will	create	an	ArrayList	object.	It	is	recommended	that	you	declare	a	variable	to	be	of	type	
List,	not	ArrayList,	as	shown	below.	

List<String> nameList = new ArrayList<String>();

Why	wouldn’t	you	just	declare	nameList	to	be	of	the	type	ArrayList<String>?	There	are	other	classes	in	Java	that	implement	the	List	
interface.	By	declaring	nameList	to	be	of	the	type	List<String>	instead	of	ArrayList<String>,	it	is	easy	to	change	your	mind	in	the	
future	and	use	another	class	that	implements	the	same	interface.	Interfaces	give	you	some	flexibility	and	reduce	the	number	of	
changes	you	might	need	to	make	in	the	future,	as	long	as	your	code	only	uses	the	funcNonality	defined	by	the	interface.	

Because	DigitalPicture	declares	a	getPixel2D()	method	that	returns	a	two-dimensional	array	of	Pixel	objects,	SimplePicture	
implements	that	interface,	and	Picture	inherits	from	SimplePicture,	you	can	use	the	getPixels2D()	method	on	a	Picture	object.	
You	can	loop	through	all	the	Pixel	objects	in	the	two-dimensional	array	to	modify	the	picture.	You	can	get	and	set	the	red,	green,	
and/or	blue	value	for	a	Pixel	object.	You	can	also	get	and/or	set	the	Color	value	for	a	Pixel	object.	You	can	create	a	new	Color	object	
using	a	constructor	that	takes	the	red,	green,	and	blue	values	as	integers	as	shown	below.	

Color myColor = new Color(255, 30, 120);

What	do	you	think	you	will	see	if	you	modify	the	beach	picture	in	the	images	folder	to	set	all	the	blue	values	to	zero?	Do	you	think	
you	will	sNll	see	a	beach?	Run	the	main	method	in	the	Picture	class.	The	body	of	the	main	method	will	create	a	Picture	object	
named	beach	from	the	“beach.jpg”	file,	open	an	explorer	on	a	copy	of	the	picture	(in	memory),	call	the	method	that	sets	the	blue	
values	at	all	pixels	to	zero,	and	then	open	an	explorer	on	a	copy	of	the	resulNng	picture.	

The	following	code	is	the	main	method	from	the	Picture	class.	

public static void main(String[] args)
{
 Picture beach = new Picture(“beach.jpg”);
 beach.explore();
 beach.zeroBlue();
 beach.explore();
}

Ac&vity:	

A3)		Open	PictureTester.java.	Be	sure	to	change	“beach.jpg”	to	“images/beach.jpg”	then	compile	and	run	its	main	method.	You	
should	get	the	same	results	as	running	the	main	method	in	the	Picture	class.	The	PictureTester	class	contains	class	(or	static)	
methods	for	tesNng	the	methods	that	are	in	the	Picture	class.	

A4)		Uncomment	the	appropriate	test	method	in	the	main	method	of	PictureTester	to	test	any	of	the	other	methods	in	Picture.java.	
You	can	comment	out	the	tests	you	don’t	want	to	run.	You	can	also	add	new	test	methods	to	PictureTester	to	test	any	methods	you	
create	in	the	Picture	class.	

Modifying	a	Picture	

The	method	zeroBlue()	in	the	Picture	class	gets	a	two-dimensional	array	of	Pixel	objects	from	the	current	picture	(the	picture	the	
method	was	called	on).	It	then	declares	a	variable	that	will	refer	to	a	Pixel	object	named	pixelObj.	It	uses	a	nested	for-each	loop	it	
sets	the	blue	value	for	the	current	pixel	to	zero.	Note	that	you	cannot	change	the	elements	of	an	array	when	you	use	a	for-each	loop,	
If,	however,	the	array	elements	are	references	to	objects	that	have	methods	that	allow	changes,	you	can	change	the	internal	state	of	
objects	referenced	in	the	array	(pixels).	

The	following	code	is	the	zeroBlue()	method	in	the	Picture	class.	

public void zeroBlue()
{
 Pixel[][] pixels = this.getPixels2D();
 for (Pixel[] rowArray : pixels)
 {
 for (Pixel pixelObj : rowArray)
 {
 pixelObj.setBlue(0);
 }
 }
}

Ac&vity:	

A5)		Using	the	zeroBlue()	method	as	a	starNng	point,	write	the	method	keepOnlyBlue()	that	will	keep	only	the	blue	values,	that	
is,	it	will	set	the	red	and	green	values	to	zero.	Create	a	class	method	to	test	this	new	method	in	the	class	PictureTester.	Be	sure	to	call	
the	new	test	method	in	the	main	method	in	PictureTester.	

A6)		Write	the	negate()	method	to	negate	all	the	pixels	in	a	picture.	To	negate	a	picture,	set	the	red	value	to	255	minus	the	current	
red	value,	the	green	value	to	255	minus	the	current	green	value,	and	the	blue	value	to	255	minus	the	current	blue	value.	Create	a	
class	method	to	test	this	new	method	in	PictureTester.	

A7)		Write	the	grayscale()	method	to	turn	the	picture	into	shades	of	gray.	Set	the	red,	green,	and	blue	values	to	the	average	of	
the	current	red,	green,	and	blue	values	(add	all	three	values	and	divide	by	3).	Create	a	class	method	to	test	this	new	method	in	the	
class	PictureTester.	Be	sure	to	call	the	new	test	method	in	the	main	method	in	PictureTester.	

