
AP	Computer	Science	A	 Name	___	
Picture	Lab	3:	Working	with	2D	Arrays	 Date	____________________________	Period	__________	

Objec&ve:	To	pracBce	wriBng	methods	for	working	with	a	two-dimensional	array	of	integers.	

Background:	
In	this	acBvity	you	will	work	with	integer	data	stored	in	a	two-dimensional	array.	Some	programming	languages	use	a	one-
dimensional	(1D)	array	to	represent	a	two-dimensional	(2D)	array	with	the	data	in	either	row-major	or	column-major	order.	Row-
major	order	in	a	1D	array	means	that	all	the	data	for	the	first	row	is	stored	before	the	data	for	the	next	row	in	the	1D	array.	Column-
major	order	in	a	1D	array	means	that	all	the	data	for	the	first	column	is	stored	before	the	data	for	the	next	column	in	the	1D	array.	
The	order	maPers,	because	you	need	to	calculate	the	posiBon	in	the	1D	array	based	on	the	order,	the	number	of	rows	and	columns,	
and	the	current	column	and	row	numbers	(indices).	The	rows	and	columns	are	numbered	(indexed)	and	oRen	that	numbering	starts	
at	0	as	it	does	in	Java.	The	top	leR	row	has	an	index	of	0	and	the	top	leR	column	has	an	index	of	0.	The	row	number	(index)	increases	
from	top	to	boPom	and	the	column	number	(index)	increases	from	leR	to	right	as	shown	below.	

� 	

If	the	above	2D	array	is	stored	in	a	1D	array	in	row-major	order	it	would	be:	

� 	

If	the	above	2D	array	is	stored	in	a	1D	array	in	column-major	order	it	would	be:	

� 	

Java	actually	uses	arrays	of	arrays	to	represent	2D	arrays.	This	means	that	each	element	in	the	outer	array	is	a	reference	to	another	
array.	The	data	can	be	in	either	row-major	or	column-major	order	(see	below).	The	AP	Computer	Science	A	course	specificaBon	tells	
you	to	assume	that	all	2D	arrays	are	row-major,	which	means	that	the	outer	array	in	Java	represents	the	rows	and	the	inner	arrays	
represent	the	columns.	

� 	

To	loop	through	the	values	in	a	2D	array	you	must	have	two	indexes.	One	index	is	used	to	change	the	row	index	and	one	is	used	to	
change	the	column	index.	You	can	use	nested	loops,	which	is	one	for	loop	inside	of	another,	to	loop	through	all	the	values	in	a	2D	
array.	

Here	is	a	method	in	the	IntArrayWorker	class	that	totals	all	the	values	in	a	2D	array	of	integers	in	a	private	instance	variable	(field	in	
the	class)	named	matrix.	NoBce	the	nested	for	loop	and	how	it	uses	matrix.length	to	get	the	number	of	rows	and	matrix[0].length	to	
get	the	number	of	columns.	Since	matrix[0]	returns	the	inner	array	in	a	2D	array,	you	can	use	matrix[0].length	to	get	the	number	of	
columns.	

public int getTotal()

{
 int total = 0;
 for (int row = 0; row < matrix.length; row++)
 {
 for (int col = 0; col < matrix[0].length; col++)
 {
 total = total + matrix[row][col];
 }
 }
 return total;
}

Because	Java	two-dimensional	arrays	are	actually	arrays	of	arrays,	you	can	also	get	the	total	using	nested	for-each	loops	as	shown	in		
getTotalNested		below.	The	outer	loop	will	loop	through	the	outer	array	(each	of	the	rows)	and	the	inner	loop	will	loop	through	
the	inner	array	(columns	in	that	row).	You	can	use	a	nested	for-each	loop	whenever	you	want	to	loop	through	all	items	in	a	2D	array	
and	you	don’t	need	to	know	the	row	index	or	column	index.	

public int getTotalNested()
{
 int total = 0;
 for (int[] rowArray : matrix)
 {
 for (int item : rowArray)
 {
 total = total + item;
 }
 }
 return total;
}

Ac&vity:	

1)	Write	a	getCount()	method	in	the	IntArrayWorker	class	that	returns	the	count	of	the	number	of	Bmes	a	passed	integer	value	is	
found	in	the	matrix.	There	is	already	a	method	to	test	this	in	IntArrayWorkerTester.	Just	uncomment	the	method	testGetCount()	
and	the	call	to	it	in	the	main	method	of	IntArrayWorkerTester.	

2)	Write	a	getLargest()	method	in	the	IntArrayWorker	class	that	returns	the	largest	value	in	the	matrix.	There	is	already	a	method	
to	test	this	in	IntArrayWorkerTester.	Just	uncomment	the	method	testGetLargest()	and	the	call	to	it	in	the	main	method	of	
IntArrayWorkerTester.	

3)	Write	getColTotal()	method	in	the	IntArrayWorker	class	that	returns	the	total	of	all	integers	in	a	specified	column.	There	is	
already	a	method	to	test	this	in	IntArrayWorkerTester.	Just	uncomment	the	method	testGetColTotal()	and	the	call	to	it	in	the	
main	method	of	IntArrayWorkerTester.	

4)	Write	a	method	reverseRows()	to	reverse	the	integers	in	each	row.	Swap	the	last	integer	with	the	first,	the	second-to-last	with	
the	second,	and	so	forth.	Print	the	two-dimensional	array	before	and	aRer	reversing	the	rows.	

