
AnagramMaker.java
Objec&ve:	To	use	recursion	to	construct	anagrams.	

Background:	
An	anagram	is	a	word,	phrase,	or	name	formed	by	rearranging	the	le;ers	of	another.	For	example,	“debit	card”	can	be	
“bad	credit”,	“dormitory”	can	be	“dirty	room”,	and	“Clint	Eastwood”	can	be	“Old	West	acDon”.	Anagrams	do	not	need	to	
make	sense,	they	just	have	to	be	a	reordering	of	the	le;ers	into	words	or	names.	For	example,	“running	with	the	bulls”	
can	be	rearranged	into	the	anagram	“bell	whining	untruths”.	

More	anagrams:	
	 “Donald	Trump”	—>	“odd	rum	plant”	and	“damp	old	turn”	
	 “CuperDno”	—>	“rope	tunic”	and	“poeDc	run”	
	 “Greenstein”	—>	“teen	singer”	(how	did	it	know?)	and	“tense	reign”	
	 “Computer	Science”	—>	“cue	comic	serpent”	

For	this	project,	we	will	create	an	anagram-maker	which	takes	a	phrase,	reorders	the	le;ers,	and	comes	up	with	every	
possible	anagram	in	dicDonary	order.	Different	word	orderings	are	treated	as	different	anagrams.	For	example,	“unbid	
dollars”	and	“dollars	unbid”	are	two	different	anagrams.	

On	the	next	page	is	an	outline	of	the	algorithm	for	making	anagrams	of	the	word	“digit”.	A	graphical	bracket	represents	a	
call	to	the	anagram-making	method.	Nested	brackets	are	recursive	calls	to	the	same	method.	Each	nested	method	tries	
to	make	anagrams	of	a	smaller	phrase	(collecDon	of	le;ers).	When	the	method	is	passed	an	empty	phrase	(length	is	0),	
then	the	ArrayLIst	anagram	contains	an	anagram.	Study	this	algorithm	before	you	a;empt	to	write	the	code.	

Once	your	anagram-making	code	is	wri;en,	your	program	will	need	some	controls.	InpuVng	a	long	phrase	will	produce	a	
large	number	of	anagrams.	For	example,	the	phrase	“once	upon	a	Dme”	will	produce	thousands	of	anagrams	and	the	
program	will	take	a	long	Dme	to	complete.	It	is	important	to	restrict	the	number	of	anagrams	printed	so	it	completes	in	a	
reasonable	amount	of	Dme.	

You	are	to	implement	two	controls.	First,	allow	the	user	to	dictate	exactly	how	many	words	are	formed	in	each	anagram.	
Using	the	word	“teaching”,	a	list	of	one-word	anagrams	would	include	“cheaDng”,	a	list	of	two-word	anagrams	would	
include	“night	ace”,	a	list	of	three-word	anagrams	would	include	“get	a	chin”,	and	so	on.	Second,	the	user	should	be	able	
to	control	the	maximum	number	of	anagrams	printed.	For	example,	“resistance”	has	over	80,000	three-word	anagrams.	
The	user	would	specify	the	number	output,	say	1,000,	to	save	Dme.	

Below	is	an	example	algorithm	for	finding	anagrams	of	“digit”.	Each	graphical	bracket	“[“	is	a	recursive	call	to	the	
anagram	maker	method.		

What	is	(are)	the	base	case	(cases)?	Which	parameters	get	smaller	each	recursive	call?	Which	parameters	get	bigger?	

• Input	phrase,	create	ArrayList	to	hold	anagram.	
• phrase = “digit” anagram = []

• Remove	non-alphabeDc	characters	in	phrase.	
• phrase = “digit”

• Is	phrase	empty?	If	no,	conDnue	finding	anagram	of	phrase	(“digit”).	
• Find	all	words	that	can	be	made	from	phrase	(“digit”).	

• allWords = [“dig”, “digit”, “it”]
• Select	first	word	(“dig”)	from	allWords	and	add	to	anagram	words.	

• anagram = [“dig”]
• Remove	le;ers	of	selected	word	(“dig”)	from	phrase	(“digit”).	

• newPhrase = “it”
• Is	(new)	phrase	empty?	If	no,	conDnue	finding	anagram	of	(new)	phrase	(“it”).	
• Find	all	words	that	can	be	made	from	phrase	(“it”).	

• allWords = [“it”]
• Select	first	word	(“it”)	from	allWords	and	add	to	anagram.	

• anagram = [“dig”, “it”]
• Remove	le;ers	of	selected	word	(“it”)	from	phrase	(“it”).	

• newPhrase = “” (empty string)
• Is	(new)	phrase	empty?	If	yes,	then	print	anagram	and	return.	

• Print	anagram	“dig	it”	and	return	
• Remove	last	word	(“it”)	from	anagram.	

• anagram = [“dig”]
• No	more	words	in	this	level	of	allWords,	so	return	

• Remove	last	word	(“dig”)	from	this	level	of	anagram	
• anagram = []

• Select	second	word	(“digit”)	from	allWords	at	this	level	and	add	to	anagram	words.	
• anagram = [“digit”]

• Remove	le;ers	of	selected	word	(“digit”)	from	this	level’s	phrase	(“digit”).	
• newPhrase = “” (empty string)

• Is	(new)	phrase	empty?	If	yes,	then	print	anagram	and	return.	
• Print	anagram	“digit”	and	return	

• Remove	last	word	(“digit”)	from	this	level	of	anagram.	
• anagram = []

• Select	third	word	(“it”)	from	allWords	at	this	level	and	add	to	anagram	words.	
• anagram = [“it”]

• Remove	le;ers	of	selected	word	(“it”)	from	this	level’s	phrase	(“digit”).	
• newPhrase = “dgi”

• Is	(new)	phrase	empty?	If	no,	conDnue	finding	anagram	of	(new)	phrase	(“dgi”).	
• Find	all	words	that	can	be	made	from	phrase	(“dgi”).	

• allWords = [“dig”]
• Select	first	word	(“dig”)	from	allWords	and	add	to	anagram.	

• anagram = [“it”, “dig”]
• Remove	le;ers	of	selected	word	(“dig”)	from	this	level’s	phrase	(“dgi”).	

• newPhrase = “” (empty string)
• Is	(new)	phrase	empty?	If	yes,	then	print	anagram	and	return.	

• Print	anagram	“it	dig”	
• Remove	last	word	(“dig”)	from	this	level	of	anagram.	

• anagram = [“it”]
• No	more	words	in	this	level	of	allWords,	so	return	

• Remove	last	word	(“it”)	from	this	level	of	anagram.	
• anagram = []

• No	more	words	in	this	level	of	allWords,	so	return

Assignment:	

1. Download	AnagramMaker.zip	from	Mr	Greenstein’s	web	site	and	unzip.	It	will	create	the	directory	AnagramMaker	
and	do	all	of	your	work	in	this	directory.	The	directory	contains	AnagramMaker.java,	WordU&li&esExtraCode.txt,	
and	randomWords.txt.	

AnagramMaker.java	has	all	of	the	methods	except	for	the	anagram-making	method.	
WordU&li&esExtraCode.txt	contains	three	important	methods	for	your	WordU&li&es.	
randomWords.txt	is	the	word	database.	

2. Copy	the	following	files	into	the	AnagramMaker	directory:	WordU&li&es.java,	Prompt.java,	FileU&ls.java,	and	your	
latest	SortMethod.java	that	sorts	an	ArrayList	of	Strings.	

3. Add	the	three	methods	from	WordU&li&esExtraCode.txt	(wordMatch,	allWords,	and	sortWords)	to	your	
WordU&li&es.java.	The	method	wordMatch	is	a	helper	method	to	allWords.	The	method	allWords	will	be	used	by	
your	anagram	algorithm	to	find	all	words	in	the	database	that	match	some	or	all	of	a	group	of	le;ers.	sortWords	uses	
your	SortMethod’s	mergeSort	method	on	the	database	so	all	the	anagrams	come	out	in	dicDonary	order.		

4. Inside	AnagramMaker.java,	create	a	recursive	method	to	find	all	the	anagrams	of	a	phrase	provided	by	the	user.	Use	
the	algorithm	on	the	previous	page	as	a	guide.	

5. The	performance	of	your	AnagramMaker	is	also	considered	in	grading.	The	program	should	take	less	than	a	few	
seconds	to	produce	the	sample	runs	below.	Tune	your	algorithm	to	get	the	desired	performance.	

Here	is	a	sample	run	output.	

% java AnagramMaker

Welcome to ANAGRAM MAKER

Provide a word, name, or phrase and out comes their anagrams.
You can choose the number of words in the anagram.
You can choose the number of anagrams shown.

Let's get started!

Word(s), name or phrase (q to quit) -> cupertino
Number of words in anagram -> 2
Maximum number of anagrams to print -> 10

cento puir
centro piu
certi upon
certo puni
ciento pur
cierto pun
cio pentru
cio purent
cire punto
citer upon

Stopped at 10 anagrams

Word(s), name or phrase (q to quit) -> monta vista

Number of words in anagram -> 2
Maximum number of anagrams to print -> 10

amant visto
attains vom
avait monts
avant moist
avant omits
avant somit
avions matt
mast tavoin
mat vastoin
matins ovat

Stopped at 10 anagrams

Word(s), name or phrase (q to quit) -> computer science
Number of words in anagram -> 3
Maximum number of anagrams to print -> 10

cc ceinture poems
cc censure tiempo
cc centimes proue
cc centuries mope
cc centuries poem
cc ceremonie puts
cc ceremonies put
cc ciento presume
cc ciento supreme
cc come peintures

Stopped at 10 anagrams

Word(s), name or phrase (q to quit) -> q

Thanks for using AnagramMaker!

