
HTMLUtilities.java - Part 2
Objec&ve:	To	use	file	IO	and	string	manipula5on	to	further	enhance	a	simple	HTML	tokenizer.	

Background:	
In	Part	1	you	created	HTMLU&li&es	for	tokenizing	HTML	tags,	words,	punctua5on,	and	numbers.	In	Part	2	you	will	
enhance	your	program	to	handle	mul5-line	constructs,	specifically	HTML	comments	and	preformaGed	text.	

HTML	comments	are	surrounded	by	the	tags	“<!—“	and	“—>”	and	treated	as	a	block	of	code.	They	can	surround	
anything,	including	other	tags.	The	purpose	of	the	comment	block	is	to	prevent	rendering;	therefore,	comment	tags	and	
their	contents	are	not	tokenized.	A	comment	block	can	appear	on	a	line	by	itself,	or	in	the	middle	of	a	line	of	code,	or	it	
could	extend	for	several	lines.	Below	are	some	examples	of	HTML	comments.	

 <!-- Comment on its own line -—>
 Tokenize me <!-- Comment in middle of line of code —>

 By the way <!—- Comment that goes
 for several lines
 that includes <p> tags</p> —> tokenize me

Another	mul5-line	construct	is	“preformaGed”	lines	of	code.	Some5mes	the	user	does	not	want	the	HTML	interpreter	to	
format	the	text.	Instead,	the	lines	are	already	formaGed	in	the	HTML	code	with	the	proper	spacing.	When	these	lines	are	
rendered,	they	are	to	appear	“as-is.”	The	code	is	called	“preformaGed”	and	the	lines	are	embedded	surrounded	by	the	
tags	“<pre>”	and	“</pre>”.	For	example,	the	lines	of	Java	code	below	represent	preformaGed	code.	

 <pre>
 public class Hoot
 {
 public static void main(String[] args)
 {
 System.out.println(“Hoot hoot”);
 }
 }
 </pre>

Without	these	tags,	the	Java	code	would	be	treated	like	any	other	text	and	all	of	the	formaXng	above	would	be	lost.	In	
contrast	to	comments,	preformaGed	code	is	tokenized	but	each	line	of	code	with	its	formaXng	is	treated	as	a	single	
token.	The	“<pre>”	tag	and	“</pre>”	tag	will	always	be	on	a	line	of	their	own.	

Assignment:	
Use	the	HTMLU&li&es.java	that	you	completed	in	Part	1.	You	will	enhance	the	tokenizeHTMLString()	method	to	
handle	the	comment	block	and	preformat	cases.	Since	these	are	mul5-line	code	and	tokenizeHTMLString	only	
tokenizes	one	line	at	a	5me,	you	will	need	to	create	a	field	that	tracks	when	the	tokenizer	is	inside	a	mul5-line	construct.	

1.	 Ignore	comments	-	Comment	blocks	are	ignored	by	the	tokenizer	and	no	tokens	are	created.	Comment	tags	are	
special	because	they	look	different	than	other	tags.	The	beginning	comment	tag	is	“<!-—“	and	the	ending	tag	is		
“-—>”.	The	tags	and	whatever	those	tags	surround	are	ignored	by	the	tokenizer.	Comments	can	some5mes	be	tricky	
since	they	start	anywhere.	For	example:	

Before a comment <!--Here is a comment
on several lines
that ends here.--> And outside again

	 In	this	example,	there	are	three	tokens	on	the	first	line	and	three	on	the	third	line,	but	the	other	por5ons	are	ignored	
by	the	tokenizer.	When	these	lines	are	run	through	HTMLTester.java,	it	produces	the	following	output:	

Before a comment <!--Here is a comment
 [token 0]: Before [token 1]: a [token 2]: comment

on several lines

that ends here.--> And outside again
 [token 0]: And [token 1]: outside [token 2]: again

	 The	tokenizer	always	works	one	line	at	a	5me,	but	comments	can	span	mul5ple	lines.	The	tokenizer	must	somehow	
remember	whether	it	is	inside	or	outside	a	comment	block	while	it	is	tokenizing.	This	can	be	done	by	using	a	field	in	
HTMLU&li&es	that	stores	the	state	of	the	tokeniza5on.	You	will	use	enum	to	help	by	inser5ng	the	following	code	into	
the	top	of	your	HTMLU&li&es	program:	

// NONE = not nested in a block, COMMENT = inside a comment block
// PREFORMAT = inside a pre-format block
private enum TokenState { NONE, COMMENT, PREFORMAT };

// the current tokenizer state
private TokenState state;

	 HTML	comments	can	include	nested	tags,	but	these	nested	text	and	tags	are	not	tokenized.	For	example,	nothing	in	
the	following	HTML	is	tokenized.	

<!—- this has paragraph tags <p>here</p> and break
-->

	 To	prevent	confusion	and	to	simplify	our	process,	we	will	have	the	precondi5on	that	comments	will	not	be	nested.	
You	do	not	need	to	detect	nested	comments.	(e.g.	“ <!-- <!-- --> --> “)	

	 Use	the	input	file	example5.html	to	test	your	code	with	comment	blocks.	

2.	 PreformaGed	text	-	Each	line	of	preformaGed	text	is	treated	as	one	token,	including	the	formaXng	(spacing	and	tabs)	
as	it	appears	in	the	code.	PreformaGed	text	can	also	span	mul5ple	lines;	therefore,	the	tokenizer	must	somehow	
remember	whether	it	is	inside	or	outside	a	preformaGed	block	of	code.	The	field	used	to	store	the	state	of	
comments	can	be	used	since	comments	and	preformaGed	text	are	mutually	exclusive	constructs.	

	 The	tags	for	preformaGed	code	are	“<pre>”	and	“</pre>”	and	each	tag	will	appear	on	its	own	line	in	the	code.	

	 Use	the	input	file	example6.html	to	test	your	code	with	preformaGed	text.	Below	are	a	few	lines	produced	by	
HTMLTester	and	the	example6.html	file.	

<pre>

 [token 0]: <pre>

 public static Scanner openToRead(String fileName) {

 [token 0]: public static Scanner openToRead(String fileName) {

 Scanner input = null;

 [token 0]: Scanner input = null;

