
HTMLUtilities.java - Part 1
Objec&ve:	To	use	file	IO	and	string	manipula5on	to	create	a	simple	HTML	tokenizer.	

Background:	
HTML,	or	Hypertext	Markup	Language,	is	the	code	behind	every	web	page.	HTML	is	made	up	of	“tags”,	or	formaGng	
commands,	inserted	into	a	text	document	that	specify	how	text	and	graphics	will	be	formaHed.	Here	is	a	simple	example:	

<html>
<body>
<p>My first paragraph.</p>
<!-- A comment -->
<q>Quote this line.</q>
Horizontal rule
<hr>
</body>
</html>

� 	

On	the	leJ	is	the	HTML	code	and	on	the	right	is	how	it	looks	on	a	browser.	The	tags	in	the	code	are	denoted	by	triangular	
brackets	“<“	and	“>”.	No5ce	that	tags,	like	<html>	and	<p>,	are	nested	with	closing	tags		</p>		and		</html>.	

The	job	of	the	browser	is	to	take	the	HTML	code	and	turn	it	into	the	formaHed	page.	This	process	takes	several	steps.	The	
first	step	is	to	break	the	code	into	tokens	that	will	be	used	in	future	steps.	In	this	project	we	will	create	a	simple	tokenizer	
or	lexer	that	will	break	the	HTML	code	into	an	array	of	token	Strings.	

To	get	started,	we	need	to	discuss	what	text	makes	a	token.	We	are	crea5ng	a	“simple”	tokenizer,	so	we	can	define	it	in	
much	more	constrained	way	than	what	is	actually	used.	Even	with	a	simple	tokenizer,	you	will	get	a	sense	of	what	a	real	
tokenizer	will	do.	

Discussion:	
If	we	use	the	simple	example	above	and	break	the	code	on	the	leJ	into	an	array	of	String	tokens,	this	is	what	it	would	
look	like:	

{ “<html>”, “<body>”, “<p>”, “My”, “first”, “paragraph”, “.”, “</p>”, “<q>”, Quote”, “this”,
“line”, “.”, “</q>”, “Horizontal”, “rule”, “<hr>”, “</body>”, “</html>” }

The	first	thing	to	no5ce	is	that	spacing	and	line	feeds	are	not	tokenized.	The	next	thing	to	no5ce	is	that	tags,	words,	and	
punctua5on	are	separate	tokens.	These	tokens	are	fed	into	a	page	formaHer	which	formats	the	page	we	see	in	the	
browser.	

The	input	format	of	the	HTML	code	does	not	influence	the	output	format.	For	example,	I	could	rewrite	the	code	in	the	
previous	figure	like	this:	

<html><body><p>My first paragraph.</p>
<!-- A comment -->
<q>Quote this line.</q> Horizontal rule <hr></body></html>

The	tokenizer	would	gather	the	same	tokens	and	the	page	formaHer	would	produce	the	same	forma.ed	output.	Since	
the	HTML	code	is	just	a	series	of	tokens	in	a	text	file,	a	tokenizer	is	fairly	simple	to	explain	and	moderately	challenging	to	
write.	This	is	a	perfect	project	for	our	APCS	A	class!	

The	best	way	to	approach	a	tokenizer	is	to	use	an	algorithm	that	performs	a	character-by-character	evalua5on.	
Tokenizers	collect	characters,	one	at	a	5me,	and	with	the	use	of	a	“look-ahead”	character	it	assembles	each	token.	For	
example,	let’s	consider	the	input	string	“Hello	Good-bye”.	The	tokenizer	reads	each	character	‘H’,	‘e’,	‘l’,	‘l’,	‘o’	and	
assembles	them	into	a	token	“Hello”.		The	look-ahead	will	see	a	space	character,	determine	the	token	is	now	complete,	

then	add	the	token	“Hello”	to	the	token	array.	The	tokenizer	con5nues	character-by-character	un5l	it	gets	the	next	alpha	
character	‘G’,	then	begins	to	assemble	the	next	token	of	con5guous	alphabe5c	characters.	Once	it	has	 
“Good-bye”	(no5ce	the	hyphen	is	part	of	the	word),	it	detects	it	is	at	the	end	of	the	input	string	and	adds	“Good-bye”	to	
the	token	array.	The	token	array	{“Hello”,	“Good-bye”}	is	returned.	

Assignment:	
Download	HTMLU&li&es1.zip	from	Mr	Greenstein’s	web	site	and	unzip	the	file.	It	will	create	an	HTMLU&li&es	directory	
in	which	you	do	all	your	work.	The	zip	file	contains	the	tester	class	HTMLTester.java,	a	starter	HTMLU&li&es.java	file,	and	
four	HTML	example	files.	HTMLTester	requires	the	FileU&ls	class,	so	copy	that	file	(or	Geany	“Save	As…”)	into	the	
directory.	

The	majority	of	your	work	will	be	in	the	HTMLU&li&es	class	and	the	tokenizeHTMLString	method.	You	may	also	need	to	
create	private	helper	methods	to	perform	tokeniza5on.	

1.	 Tokenize	tags:	In	the	tokenizeHTMLString	method,	add	func5onality	to	tokenize	just	the	HTML	tags.	All	tags	start	
with	a	“<“	character	and	end	with	a	“>”	character.	Ignore	all	text	outside	of	the	tags.	For	example,	the	tokenizer	
receives	the	input	string:	

“<q>Quote this line.</q> Horizontal rule <hr></body></html>”

	 and	returns	the	array:	

{ “<q>”, “</q>”, “<hr>”, “</body>”, “</html>” }

	 Test	your	code	using	HTMLTester	and	input	file	example1.html.	A	sample	run	is	below.	Tokenized	tags	are	highlighted	
in	bold.	

java HTMLTester example1.html

<!DOCTYPE html>

 [token 0]: <!DOCTYPE html>

<html>

 [token 0]: <html>

<body>

 [token 0]: <body>

<p>My first paragraph.</p>

 [token 0]: <p> [token 1]: </p>

<!-- A comment -->

 [token 0]: <!-- A comment -->

<q>Quote this line.</q>

 [token 0]: <q> [token 1]: </q>

 [token 0]:

Horizontal rule

<hr>

 [token 0]: <hr>

</body>

 [token 0]: </body>

</html>

 [token 0]: </html>

2.	 Tokenize	words:	In	addi5on	to	tags,	add	func5onality	to	the	tokenizeHTMLString	method	to	tokenize	words.	A	
“word”	is	any	con5guous	group	of	alphabet	characters	(a	to	z	or	A	to	Z)	including	a	single	hyphen	surrounded	by	
alpha	characters	(like	“Hello-World”	below).	Test	your	code	using	HTMLTester	and	input	file	example2.html.	A	
sample	run	is	below.	Tokenized	words	are	highlighted	in	bold.	

java HTMLTester example2.html

<!DOCTYPE html><html><body>This is a paragraph: Hello-World.

 [token 0]: <!DOCTYPE html> [token 1]: <html> [token 2]: <body> [token 3]: This [token 4]: is
 [token 5]: a [token 6]: paragraph [token 7]: Hello-World [token 8]:

This is the second sentence like the first except longer.

 [token 0]: This [token 1]: is [token 2]: the [token 3]: second [token 4]: sentence
 [token 5]: like [token 6]: the [token 7]: first [token 8]: except [token 9]: longer
 [token 10]:

. . .

3.	 Tokenize	punctua5on:	Add	func5onality	to	the	tokenizeHTMLString	method	to	tokenize	punctua5on	characters.	It	
will	be	helpful	if	you	create	an	isPunctua&on	method	to	detect	a	punctua5on	character.	Here	is	a	list	of	possible	
punctua5on	characters:	

 '.', ',', ';', ':', '(', ')', '?', ‘!', ‘=‘, '&', '~', '+', '-'

	 OJen,	punctua5on	is	at	the	beginning	or	ending	of	words	or	tags.	A	sample	run	with	HTMLTester	and	specific	lines	
from	example3.html	are	below.	Tokenized	punctua5on	are	highlighted	in	bold.	

<body>We like the number for pi 3.1415926 and so on.

 [token 0]: <body> [token 1]: We [token 2]: like [token 3]: the [token 4]: number
 [token 5]: for [token 6]: pi [token 7]: . [token 8]: and [token 9]: so
 [token 10]: on [token 11]: .

Stand-alone punctuation ; : . - can cause problems.

 [token 0]: Stand-alone [token 1]: punctuation [token 2]: ; [token 3]: : [token 4]: .
 [token 5]: - [token 6]: can [token 7]: cause [token 8]: problems [token 9]: .

	 No5ce	that	numeric	decimal	points	are	tokenized	as	punctua5on.	We	will	handle	numbers	in	the	next	step.	

4.	 Tokenize	numbers:	Add	func5onality	to	the	tokenizeHTMLString	method	to	tokenize	numbers.	Numbers	will	appear	
in	different	forms:	

	 53	 	 3.1245	 	 987.34	 	 4e-2	 	 6.0221409e23	

	 There	is	also	the	nega5ve	form	of	each	of	these	numbers:	

	 -53	 	 -3.1245		 -987.34		 -4e-2	 	 -6.0221409e23	

	 A	sample	run	with	HTMLTester	and	specific	lines	from	example4.html	are	below.	Tokenized	numbers	are	highlighted	
in	bold.	

53 3.1245 987.34 4e-2 6.0221409e23

 [token 0]: 53 [token 1]: 3.1245 [token 2]: 987.34 [token 3]: 4e-2 [token 4]: 6.0221409e23

-53 -3.1245 -987.34 -4e-2 -6.0221409e23

 [token 0]: -53 [token 1]: -3.1245 [token 2]: -987.34 [token 3]: -4e-2 [token 4]: -6.0221409e23

	 Note:	A	hyphen	‘-‘	with	a	space	before	the	number,	like	“-	2.34”,	will	be	interpreted	as	two	tokens:	a	hyphen	and	a	
number.	

