HTMLRender.java

Objective: To use prior work, logic, string manipulation, and a GUI to render a simple HTML file.

Background:

In the prior project, you created a simple HTML tokenizer utility. It reads one line of HTML at a time and returns an array
of tokens. The tokens are either contiguous text, punctuation, or HTML tags. In this project, the tokens will be used to
render the text on a browser window emulator. The emulator code will be provided as well as documentation on how to
use the emulator.

Your job will be to write HTMLRender to convert HTML and render an image of the text in a window. GUI software will be
provided to you called SimpleHtmIRenderer. The process is two steps. First, HTMLRender will read an entire HTML file
and tokenize it using your tokenizeHTMLString () method from HTMLUtilities. HTMLRender should store all the
tokens in one long String array or Arraylist. Second, HTMLRender reads the array, token-by-token and performs the
appropriate browser emulator method calls to render the image.

Here is a sample input HTML file: and here is the rendered output image.

<html><body>
<hl1>BIG Header 1</hl>
<h2>Smaller Header 2</h2>

<p>This line has <i>italic</i> BIG Header 1
and bold words</p>
<P>Tags are case Sma”er Header 2
insensitive.</P> This line has italic and bold words
And random text can have
 breaks
in it Tags are case insensitive.
<pre>
pre-formatted text And random text can have
looks like this breaks in it
</pre> pre-formatted text
</body></html> looks like this
Discussion:

There are a few details to implement in this project.
1. Rendering punctuation is special. Most punctuation does not have a space before it. For example, take the sentence
“This is a blast!”. tokenizeHTMLString returns “This”, “is”, “a”, “blast”, and “!”. When you print it to the browser,

“an

there should be no space between “blast” and “1”. This is also true for question marks “?” and periods “”.
2. Tags are case insensitive. The tag “<p>" and the tag “<P>”" are treated the same.

3. Plain text should never exceed 80 characters per line. As you render the lines of text, you must count the characters,
and remember spaces are characters in the count. Bold and italic text must also not exceed 80 characters per line.
The heading formats (<h1> through <h6>) each have different maximum line lengths (see table under
SimpleHtmIRenderer on a following page). Pre-formatted text is the exception because it must appear as it does in
the code regardless of the length.

4. HTMLRender must be able to handle nested tags. The following tags will be presented with the following nesting.

Tags Name Nested tags

<html>, </html> | pegin HTML all other tags

<body>, </body> HTML body

<p>, </p> paragraph tags , ; <i>, </i>;
, <hr>
<q>, </> quotation tags
; <hr>

, bold tags
; <hr>

<i>, </i> italic tags
; <hr>

<hr> horizontal rule no nested tags

<hl>, </hl> heading tags no nested tags

<h2>, </h2>

<h6>, </h6>

<pre>, </pre> preformatted text tags ~ no nested tags

SimpleHtmIRenderer:

The GUI we will use for this project is called SimpleHtmIRenderer, a simple rendering engine that uses print statements
to render formatted text to a window. Your HTMLRender program will use the following fields to set up the rendering
engine:

// SimpleHtmlRenderer fields
private SimpleHtmlRenderer render;
private HtmlPrinter browser;

Your constructor will contain the following lines:

// Initialize Simple Browser
render = new SimpleHtmlRenderer();
browser = render.getHtmlPrinter();

Given the code above, all rendering print statements will be prefixed with browser (e.g.
browser.print (“Hello”)). Below is a list of tags you must render and the corresponding HtmlIRender print
statements.

HTML code HtMLRender print statement max line
length
textmﬂﬂmnotags browser.print (“Hello world”) 80
newline browser.println ()
<p> </p> same as text with no tags except with blank line after </p>
Hello browser.printBold (“Hello”) 80
<i>Booo</i> browser.printItalic (“Booo”) 80
<q> </q> browser.print (“"\””) 80
<h1>H1</h1> browser.printHeadingl (“H1"”) 40
<h2>H2</h2> browser.printHeading2 (YH2") 50

HTML code HtMLRender print statement max line

length
<h3>H3</h3> browser.printHeading3 (“H3”) 60
<h4>H4</h4> browser.printHeading4 (“H4") 80
<h5>H5</h5> browser.printHeading5 (YH5") 100
<h6>H6</h6> browser.printHeading6 (“H6") 120
<hr> browser.printHorizontalRule ()

 browser.printBreak ()
<pre>Text</pre> | browser.printPreformattedText (“Text”) no max

Assignment:

1. Download and unzip the starter code. It contains the rendering software SimpleHtmIRenderer.jar and a starter
HTMLRender.java file. It also includes sample code example7.html for rendering all the tags in this project. You will
need to copy over HTMLUtilities.java and FileUtils.java to perform all the functions required by this project. The
base HTMLRender code provided has a run () method that gives you a sample of printing different tags. To compile
and run the sample code, use the following commands:

javac -cp .:SimpleHtmlRenderer.jar *.java
java -cp .:SimpleHtmlRenderer.jar HTMLRender

2. Write methods to open the HTML file, read and tokenize each line, and build your array of tokens. Use HTMLTester
as a model to open the HTML file, read the file, and tokenize each line. It contains code for retrieving the file name
from the command line. The input file name should be included on the command line just like HTMLTester. To run
example7.html the command should be:

java -cp .:SimpleHtmlRenderer.jar HTMLRender example7.html

|”

Do not hardcode in “example7.html|” or any other filename; otherwise, you will lose points.

3. Write a method to process the tokens in the array and render them onto a window using SimpleHtmIRenderer. Your
method should use a while loop (like tokenizeHTMLString) and process the array token-by-token.

4. Use example7.html to test your code. A series of sample outputs starts on the next page.

The following graphic shows the rendering of plain text sentences (wrapped-around and not exceeding 80 characters),
paragraph spacing, a horizontal rule, line breaks, bold and italic text.

[JON Simple HTML Renderer

This is HTML your program should tokenize and render. Be sure not to go over 80
characters on a line or the text will go to the right and | will have to scroll
the window.

Handling paragraphs even if they are different lines.

This new paragraph starts in middle of the line.

Here comes a horizontal rule

Here comes a break.
Then break with punctuation!
Start with plain text, then italic words and bold statements .

We can have bold paragraphs too, that run on for a while and will have to go to
the next line if it gets too long.

The following graphic shows quoted text, headings H1 through H3, H3 text does not exceed 60 characters per line.

[JoN] Simple HTML Renderer

we want to have italic statements that could go to the next line, since lines
can get long and need to wrap-around several times .

Of course, we quote " Mr Greenstein" briefly.
Before a comment? Yes! And outside again!

Now for something new!!!!

H 1 Huge header;-)

H 2 Large header:-)

H 3 Bold header that goes on and on from one line, to the
other, without any stopping; we could stop but | want to
test the length of the line.

B0 A D ald e diiiine lemmd e

The following graphic shows numbers and preformatted text.

[NON] Simple HTML Renderer

Let us try some numbers:
345, -198, 4e02, 4.32e2, and -1.543e-23

Do not forget preformatted text starting here.

public static Scanner openToRead(String fileName) {
Scanner input = null;
try {
input = new Scanner(new File(fileName));
} catch (FileNotFoundException e) {
System.err.println("ERROR: Cannot open " + fileName + " for reading.");

System.exit(-1);

