
PegSolitaire 

Objective: To create a game that uses conditionals and iterative statements. 

Background: 
Peg Solitaire is a board game for one player that uses either pegs or marbles as pieces. The 
objective is to remove all but one of the pieces from the board to win. The board is a 7x7 grid of 
holes with the corners removed (picture above). To start, pieces are placed in all but the center 
hole. Pieces may jump adjacent pieces horizontally or vertically if there is an empty hole two spaces away. No diagonal 
move is allowed. The jumped piece is removed and the game continues until there are no valid moves available. The less 
pieces remaining the better. 

Discussion: 
Peg Solitaire requires at least two classes. One class description will be for the board (PegBoard) and a second for 
playing the game (PegSolitaire). Mr Greenstein will provide the PegBoard class. Your job will be to construct the 
PegSolitaire class. 
 
The PegBoard class constructs the initial board with pieces in all the locations excluding 
the middle (see right). Pieces are identified by their row and column indices. PegBoard 
contains the following methods for accessing and modifying the board. 

• void printBoard() - Prints the board as shown on the right. 
• boolean isValidLocation(row, col) - Returns true if the row and column values are on the 

board. Example: (2, 2) and (4, 6) return true. (1, 5) and (-21, 3) return false. 
• boolean isPeg(row, col) - Returns true if a peg is in location (row, col); false otherwise. 

Precondition: (row, col) must be a valid location. 
• void putPeg(row, col) - Places a peg into the (row, col) location even if a peg is already 

there. Precondition: (row, col) must be a valid location. 
• void removePeg(row, col) - Removes the peg from the (row, col) location even if the 

location is empty. Precondition: (row, col) must be a valid location. 
• int pegCount() - Returns the number of pegs remaining on the board. 
• int getBoardSize() - Returns the side length of the board (7). 

The PegSolitaire class has the main method. It provides a user interface, decides which moves are valid, manages the 
pieces in the PegBoard, and determines when the game is over. 

The user interface is through the terminal window. The interface will ask for the “jumper peg” location. The interface 
should be forgiving of bad input and ask again. For example, the first three inputs below are rejected and the last one 
accepted: 

Jumper peg - row col (ex. 3 5, q=quit) -> 2 
Jumper peg - row col (ex. 3 5, q=quit) -> hello 
Jumper peg - row col (ex. 3 5, q=quit) -> 5 0 
Invalid jumper peg -> 5 0 
Jumper peg - row col (ex. 3 5, q=quit) -> 3 1 

The user can also quit out of the game at any time by entering a “q”. 

To handle the input, the String class has a split method that you can use to parse the input line. The following code takes 
a String, separates the values delimited by spaces, and returns an array of Strings. 

String str = “1 4”; 
String[] values = str.split(“ +”); 
// values[0] = “1” and values[1] = “4” 

Use the values in the String array to determine if the input is valid, then perform the proper action. 



The PegSolitaire class should recognize when the selected peg has no moves, one 
move, or more than one move. If there are no moves, then the program should 
announce “invalid jumper peg” and prompt for another input. If there is only one 
possible move, the move should be executed immediately. If there is more than 
one move, the interface should give the user the choice. For example, the screen 
on the right shows the user selected peg (3, 3) and it has two possible jump 
locations, (1, 3) and (5, 3). The program displays both moves and prompts the user 
to choose. 

To store a location, a Location class has been provided in your zip file. A list of 
possible Locations can be stored in either an array or ArrayList. 

After each move, PegSolitaire should determine whether there are valid moves 
remaining. If not, it should announce the total number of pegs remaining and end 
the game (example in figure below right). 

Assignment: 
Download the PegSolitaire.zip file from Mr Greenstein’s web site and unzip. It 
will create a PegSolitaire directory containing the files PegSolitaire.java, 
PegBoard.java, Location.java, and PegSolitaire.jar. You will need to copy over 
your Prompt.java file to this directory and use it. Do all of your work in the 
PegSolitaire directory and construct your game inside the PegSolitaire.java file. 

The PegSolitaire.jar file contains a working game from Mr Greenstein. Play the 
game several times to get a feel for how your game should look. To run Mr 
Greenstein’s game, enter: 

java -cp PegSolitaire.jar PegSolitaire 

Be sure not to include “-cp PegSolitaire.jar” when compiling or running your 
version of the game. 


