
Control Statements for
Karel the Robot (Karel2)

Objective: To learn how to program Karel the Robot so it can repeat tasks and make decisions.

Background:
In the previous exercise, we learned about Karel the Robot and how to make Karel perform some rudimentary
tasks. Although we learned how to decompose and define new methods for Karel, it cannot solve any new
problems on its own. Previous tasks took less than 30 commands. Suppose a problem takes Karel over 1000
commands to complete. There is a point where decomposition will not reduce the code very much, so you end
up with a very long program that is difficult to read. Writing step-by-step linear programming only helps us up
to a point.

To solve more difficult problems, it would help if Karel could make some decisions on his own. It would also
help if repetitive tasks (e.g. moveForward(); moveForward(); moveForward(); etc) could be
expressed in a more succinct way. Fortunately, Karel’s world provides us statements that help to affect the order
in which the program executes. These are called control statements and they generally fall into two categories:

1. Conditional statements. Conditional statements specify that certain statements in a program should be
executed only if a particular condition holds. In Karel’s world, you specify conditional execution using an
if statement.

2. Iterative statements. Iterative statements specify that certain statements in a program should be executed
repeatedly, forming what programmers call a loop. Karel’s world supports two different iterative statements:
a repeat statement that is useful when you want to repeat a set of commands a predetermined number of
times and a while statement that is useful when you want to repeat an operation as long as some condition
holds.

Conditional statements:
Let’s revisit the fillTheHoles (1.2.2) method from last time.

Before filling in the hole, Karel might want to check if some other repair crew has already filled in the hole with
a beeper. If so, Karel does not need to put down a second beeper. To represent such a check in the context of a
program, we would use the if statement. The if statement takes on the following form.

if (conditional test) {
	 statements to be executed only if the condition is true
}

The conditional test shown in the first line must be replaced by one of the tests Karel can perform on his
environment. The result of the test is either true or false. If the test is true, Karel executes the statements
enclosed in braces; if the test is false, Karel does nothing.

The 5 conditional tests in Karel’s world are listed in the table below.

In addition to these conditional tests, there are three logical operators available.

	 !	 not
	 &&	 and
	 ||	 inclusive-or

You may use these logical operators with the conditions. The following table describes how they work.

We can use the if statement in the fillHole method so Karel only puts down a beeper if there is not already a
beeper in the hole. A new definition of fillHole would look like this:

void fillHole() {
	 turnRight();
	 moveForward();
	 if (! onBeeper()) {
	 	 dropBeeper();
	 }
	 turnAround();
	 moveForward();
	 turnRight();
}

By convention, the body of any control statement is indented with respect to the braces that surround it.
Indentation makes it much easier to see exactly which lines are being addressed by the control statement. When
control statements are inside other control statements, the statements are said to be nested. Luckily for us
Karel’s programming environment automatically indents to make our program readable.

Sometimes the outcome of a decision is either do something when a condition is true, or do something else if it
is false. For these cases, the if statement in Karel’s world has an alternate form that looks like this:

if (conditional test) {
	 statements to be executed only if the condition is true
} else {
	 statements to be executed only if the condition is false
}

We will have an example of this type of if statement later in our activities.

Iterative statements
In solving Karel problems, you will often find that repetition is a necessary part of your solution. If you were
really going to program a robot to fill holes, it would hardly be worthwhile to have it fill just one. The value of
having a robot perform such a task comes from the fact that the robot could repeatedly execute its program to
fill one pothole after another.

To see how repetition can be used in the context of a programming problem, consider the problem
climbTheStairs (1.2.1) shown below. Climbing each step will take the same series of moves. To get to the top
will require repeating the same commands over and over. Even decomposition will require calling the same
method over and over.

Luckily for us, Karel’s world supports the repeat statement, which specifies exactly how many times you
want Karel to perform the same function.

repeat (count) {
	 statements to be repeated
}

In the repeat statement, count is an integer indicating the number of repetitions. Let’s try to solve the
climbTheStairs problem. To implement repetition, all we need to do is repeat the same function six times for
six steps.

repeat (6) {
	 climbStep();
}

I will leave it to you to implement the climbStep() method.

The repeat statement is only useful when you know in advance exactly how many times a task is to be
repeated. What if we wanted to have Karel find a beeper but we did not know beforehand how far Karel needs
to go. For example, there could be a world like this:

Or a world like this:

Some Karel problems test your code on thousands of situations and you must pass them all. In this case we
cannot program a specific number of steps, so repeat will not suffice. We need to write a program that will
adapt to the circumstances.

To be more flexible, Karel’s world provides us with a new iterative statement that can handle different
situations, the while statement.

while (conditional test) {
	 statements to be repeated
}

Karel can now check to see if he is on the beeper. The condition onBeeper() in a while statement will insure
that Karel repeatedly moves forward until he is on top of the beeper. This methodology allows us to handle
different distances. The while statement will appear in our program as follows:

while (! onBeeper()) {
	 moveForward();
}

This solves our many-worlds problem. If we know exactly how many iterations then we use repeat. If we
iterate based on a condition then we use while.

Assignment:
You will solve the following four problems. The Karel environment stores your program in a file karel.txt in
your home directory. BEWARE: If you start working on a new problem, the old code is lost.

To be sure that your work is saved properly, it is important that when you finish a problem you should move the
karel.txt file to a directory you will create called Solutions. Once moved, rename the file so you know what it
contains. For example, the file containing the solution to climbTheStairs should be renamed
climbTheStairs.txt. Do this for each problem you program.

1. Solve the problems defuseOneBomb (1.1.2) and defuseTwoBombs (1.1.3). Use the repeat command on
the first and the while command for the second. Decompose repetitive segments of code into their own
methods.

2. Solve the problem saveTheFlower (1.2.3). Decide which iterative command, repeat or while, works best.

3. Solve the problem mowTheLawn (1.2.4). This is a slight variation on prior problems with its own twist.

4. Solve the problem tileTheFloor (1.3.4). This requires a compound conditional that includes a logical
operator.

