
Control Statements for
Karel the Robot (Karel2)

Objective: To learn how to program Karel the Robot so it can repeat tasks and make decisions.

Background:
In the previous exercise, we learned about Karel the Robot and how to make Karel perform some rudimentary
tasks. Although we learned how to decompose and define new methods for Karel, it cannot solve any new
problems on its own. Previous tasks took less than 30 commands. Suppose a problem takes Karel over 1000
commands to complete. There is a point where decomposition will not reduce the code very much, so you end
up with a very long program that is difficult to read. Writing step-by-step linear programming only helps us up
to a point.

To solve more difficult problems, it would help if Karel could make some decisions on his own. It would also
help if repetitive tasks (e.g. move(); move(); move(); etc) could be expressed in a more succinct way.
Fortunately, Karel’s world provides us statements that help to affect the order in which the program executes.
These are called control statements and they generally fall into two categories:

1. Conditional statements. Conditional statements specify that certain statements in a program should be
executed only if a particular condition holds. In Karel’s world, you specify conditional execution using an
if statement.

2. Iterative statements. Iterative statements specify that certain statements in a program should be executed
repeatedly, forming what programmers call a loop. Karel’s world supports two different iterative statements:
a for statement that is useful when you want to repeat a set of commands a predetermined number of times
and a while statement that is useful when you want to repeat an operation as long as some condition holds.

Conditional statements:
We will be working in the directory Karel1and2 created in the previous exercise. Let’s revisit the
fillPothole method from last time.

Before filling in the pothole, Karel might want to check if some other repair crew has already filled in the hole
with a beeper. If so, Karel does not need to put down a second beeper. To represent such a check in the context
of a program, we would use the if statement. The if statement takes on the following form.

if (conditional test) {
 statements to be executed only if the condition is true
}

The conditional test shown in the first line must be replaced by one of the tests Karel can perform on his
environment. The result of the test is either true or false. If the test is true, Karel executes the statements
enclosed in braces; if the test is false, Karel does nothing.

The 18 conditional tests in Karel’s world are listed in the table below.

!

Notice that each test has a corresponding opposite test. For example, you can use frontIsClear() condition
to determine if the path in front of Karel is clear, or the frontIsBlocked() condition to determine if the path
in front is blocked by a wall. Both conditions are provided and you can decide which is easiest to apply.

We can use the if statement in the fillPothole method so Karel only puts down a beeper if there is not
already a beeper in the hole. A new definition of fillPothole would look like this:

public void fillPothole() {
 turnRight();
 move();
 if (noBeepersPresent()) {
 putBeeper();
 }
 turnAround();
 move();
 turnRight();
}

By convention, the body of any control statement is indented with respect to the braces that surround it.
Indentation makes it much easier to see exactly which lines are being addressed by the control statement. You
may want to put in more checks, like to check if Karel has any beepers in his bag before he puts down a beeper.

if (noBeepersPresent()) {
 if (beepersInBag()) {
 putBeeper();
 }
}

When control statements are inside other control statements, the statements are said to be nested. In this
statement the putBeeper command is executed only if there is no beeper on the corner and there is at least one
beeper in Karel’s bag.

Sometimes the outcome of a decision is either do something when a condition is true, or do something else if it
is false. For these cases, the if statement in Karel’s world has an alternate form that looks like this:

if (conditional test) {
 statements to be executed only if the condition is true
} else {
 statements to be executed only if the condition is false
}

We will have an example of this type of if statement later in our discussion.

Iterative statements
In solving Karel problems, you will often find that repetition is a necessary part of your solution. If you were
really going to program a robot to fill potholes, it would hardly be worthwhile to have it fill just one. The value
of having a robot perform such a task comes from the fact that the robot could repeatedly execute its program to
fill one pothole after another.

To see how repetition can be used in the context of a programming problem, consider the following roadway in
which potholes are spaced along 2nd Street at every even numbered Avenue.

!
Our current PotholeFillingKarel will fill in one pothole, but this problem has five equally spaced
potholes. Luckily for us, Karel’s world supports the for statement, which specifies exactly how many times
you want Karel to perform the same function.

for (int a = 0; a < count ; a++) {
 statements to be repeated
}

In the for statement, count is an integer indicating the number of repetitions. Let’s make a new file called
RoadRepairKarel.java and copy in the contents of the PotholeFillingKarel class. Be sure to change the
name of this new class to RoadRepairKarel to match the filename. To implement repetition, all we need to do
is change the run method as follows:

public void run() {
 for (int a = 0; a < 5; a++) {
 move();
 fillPothole();
 move();
 }
}

The for statement is only useful when you know in advance exactly how many times a task is to be repeated.
What if we had a different world with a different number of potholes? For example, this world:

!
Run RoadRepairKarel and click the “Load World“ button. In the file window, select
RoadRepairKarel3x3.w. You should get the world shown above. Next click “Start Program” and you will get

an error! RoadRepairKarel only knows how to work on a road with exactly 5 potholes, so it is not very
flexible.

To be more flexible, Karel’s world provides us with a new iterative statement that can handle different
situations, the while statement.

while (conditional test) {
 statements to be repeated
}

Karel now needs to check if his path is clear in front of him. The condition frontIsClear() in a while
statement will insure that Karel repeatedly fills potholes until he detects a wall. This methodology allows us to
handle a number of different roadways including RoadRepairKarel3x3.w above. Exchange the for statement
with the while statement in RoadRepairKarel as follows:

public void run() {
 while (frontIsClear()) {
 move();
 fillPothole();
 move();
 }
}

Whether we load the world RoadRepairKarel.w or RoadRepairKarel3x3.w, Karel will fill in all the evenly
spaced potholes he finds.

Assignment:

1. Copy your RoadRepairKarel program into a new file UnevenRoadRepairKarel.java and change the
class name to UnevenRoadRepairKarel. Solve the following problem.

!
Do not fill holes that are already filled! That would put 2 beepers in a hole, a waste of resources. Remember,
only one beeper per pothole.

2. Modify UnevenRoadRepairKarel to fix that last pothole at the corner of 1st Street and 7th Avenue.
Leaving the last pothole unfilled is called a fencepost error. Often solutions handle a repetitive problem,
like potholes, except the first or the last occurrence of the problem. The fix is often simple, but finding a
fencepost error is not always easy to detect. In fact, you will find this error to be very common in
programming and is often very costly in time to discover and fix.

